Math, asked by mnageswarraodop7d9j0, 1 year ago

simplify =1/√5+√3 + 1/2(√5-√3)

Answers

Answered by yashsrini
6
1/√5+√3 + 1/2(√5-√3)
taking LCM we get 
2(√5-√3) + √5 + √3
-------------------------
2  ([√5)² - (√3)²]

2√5-2√3 +√5 + √3
-----------------------
2 x 2

⇒3√5-√3
-------------
      4
Answered by Salmonpanna2022
0

Step-by-step explanation:

 \bf \underline{Solution-} \\

\textsf{Given that-}\\

 \sf{ \frac{1}{ \sqrt{5} +  \sqrt{3}  } +  \frac{1}{2} ( \sqrt{5} -  \sqrt{3} )  } \\

 \sf{  = \frac{1}{ \sqrt{5} -  \sqrt{3}   }  \times  \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3}  } +  \frac{1}{2}   ( \sqrt{5}  -  \sqrt{3}) } \\

 \sf{  = \frac{1( \sqrt{5}  -  \sqrt{3} )}{( \sqrt{5}  +  \sqrt{3} )( \sqrt{5} -  \sqrt{3})  } +  \frac{1}{2}( \sqrt{5}  -  \sqrt{3}  ) } \\

 \sf{  = \frac{ \sqrt{5}  -  \sqrt{3} }{( \sqrt{5}  +  \sqrt{3} )( \sqrt{5} -  \sqrt{3})  } +  \frac{1}{2}( \sqrt{5}  -  \sqrt{3}  ) } \\

 \sf{  = \frac{ \sqrt{5}  -  \sqrt{3} }{( \sqrt{5})^{2}  - (  \sqrt{3} {)}^{2}   } +  \frac{1}{2}( \sqrt{5}  -  \sqrt{3}  ) } \\

 \sf{  = \frac{ \sqrt{5}  -  \sqrt{3} }{5- 3  } +  \frac{1}{2}( \sqrt{5}  -  \sqrt{3}  ) } \\

 \sf{  = \frac{ \sqrt{5}  -  \sqrt{3} }{2 } +  \frac{1}{2}( \sqrt{5}  -  \sqrt{3}  ) } \\

 \sf{ =  \frac{1}{2} ( \sqrt{5}  -  \sqrt{3} ) +  \frac{1}{2} ( \sqrt{5}  -  \sqrt{3} )} \\

 \sf{ =  \bigg( \frac{1}{2} +  \frac{1}{2}  \bigg) \Big( \sqrt{5}  -  \sqrt{3}   \Big)} \\

 \sf{ = 1 \times  \Big( \sqrt{5}  -  \sqrt{3}  \Big)}

 \sf{ =  \Big( \sqrt{5}  -  \sqrt{3}  \Big)} \:  \:  \:  \bf{Ans.} \\

\textsf{Hope this helps.}\\

Similar questions