Math, asked by saiprateek4480, 4 hours ago

simplify (1+cot*2thita) (1-cos thita) (1+cos thita)

Answers

Answered by diwanamrmznu
6

★given:-

 \implies \: (1  +  \cot {}^{2}  \theta)(1 -  \cos \theta)(1 +  \cos \theta ) \\

find:-

  • given quantity value

solution:-

 \implies \: (1 +  \cot {}^{2}  \theta )(1 -  \cos  {}^{} \theta )(1 +  \cos \theta) \\

 \implies \: (1 +  \cot {}^{2}  \theta )(1 -  \cos  {}^{2} \theta ) \\

 \implies \: ( \cosec {}^{2} \theta)  ( \sin {}^{2} \theta) \\

 \implies \:  \frac{1}{ \cancel{ \sin {}^{2}  \theta }}  \times   \cancel{\sin {}^{2} \theta } \\

 \implies \boxed{ \red{1}}

uses formula

 \implies \star \pink{(a + b)(a - b) = a {}^{2}  - b {}^{2} } \\  \\  \implies \star \pink{1 +  \cot {}^{2}  \theta =  \cosec {}^{2}  \theta  } \\  \\  \implies \star \pink{1 -  \cos  {}^{2} \theta  = \sin {}^{2}  \theta  } \\  \\  \implies \:   \star \pink{\cosec \theta  =  \frac{1}{ \sin \theta } }

======================================

I hope it helps you

Similar questions