Math, asked by parishah123, 11 months ago

simplify 1 upon root 24 - 2 root 135 - root 15 ​

Answers

Answered by abhi178
0

simplest form will be {√6 - 84√(15)}/12

it is given that,

1/√24 - 2√(135) - √15

= 1/√(2 × 2 × 2 × 3) - 2/√(3 × 3 × 3 × 5) - √(15)

= 1/√(2² × 6) - 2√(3² × 15) - √(15)

= 1/2√6 - 2 × 3√15 - √15

= 1/2√6 - 6√15 - √15

= 1/2√6 - 7√15

= (1 - 7√15 × 2√6)/2√6

= {1- 14√(15 × 6)}/2√6

= {1 - 14√(2 × 3 × 3 × 5)}/2√6

= {1 - 42√(10)}/2√6

now rationalising,

= {1 - 42√10}/2√6 × √6/√6

= {√6 - 42√(10 × 6)}/12

= {√6 - 42√(60)}/12

= {√6 - 42√(2 × 2 × 15)}/12

= {√6 - 84√(15)}/12

also read similar questions : what is a surd and pure surd

https://brainly.in/question/9379813

Surds & Indices. How to solve this question?

https://brainly.in/question/11300463

Answered by guptasingh4564
0

The Answer is \frac{\sqrt{6}-84\sqrt{15} }{12}

Step-by-step explanation:

Given,

Simplify:  \frac{1}{\sqrt{24}}-2\sqrt{135}-\sqrt{15}

\frac{1}{\sqrt{24}}-2\sqrt{135}-\sqrt{15}

=\frac{1}{\sqrt{2\times 2\times 2\times 3} } -2\sqrt{3\times 3\times 3\times 5}-\sqrt{3\times 5}

=\frac{1}{2\sqrt{6}}-(2\times 3)\sqrt{15}-\sqrt{15}

=\frac{1}{2\sqrt{6}}-6\sqrt{15}-\sqrt{15}

=\frac{1}{2\sqrt{6}}-7\sqrt{15}

=\frac{1-14\sqrt{90} }{2\sqrt{6} }

=\frac{1-42\sqrt{10} }{2\sqrt{6} }

=\frac{(1-42\sqrt{10})\sqrt{6}}{2\sqrt{6}\times \sqrt{6} }

=\frac{\sqrt{6}-42\sqrt{60} }{12}

=\frac{\sqrt{6}-84\sqrt{15} }{12}

So, The Answer is \frac{\sqrt{6}-84\sqrt{15} }{12}

Similar questions