Math, asked by sanuadhikari0604, 2 months ago

simplify.
1/x-2 +4/4-x^2

Answers

Answered by amitnrw
1

Given :  1/x-2 +4/4-x^2

To find :  Simplify

Solution:

1/(x-2) + 4/(4-x²)

=  1/(x-2) + 4/(2²-x²)

Taking -ve common from 2nd term

= 1/(x-2) - 4/(x² - 2²)

using a² - b² = (a + b)(a - b)

=  1/(x-2) - 4/(x + 2)(x - 2)

Taking  1/(x-2) common

= (1/(x - 2)) ( 1  - 4/(x + 2))

= (1/(x - 2)) ( (x + 2  - 4)/(x + 2))

= (1/(x - 2)) ( (x -2)/(x + 2))

Cancelling  x -2 from numerator and denominator

=  1/(x + 2)

1/(x-2) + 4/(4-x²) =  1/(x + 2)

learn More:

find the value of - 34-3(-10)Simplify the following expressions and ...

brainly.in/question/23514927

Owen simplified the expression r-8 s-5. r−8s−5 = 1 r8 ⋅ s5 = s5 r8

brainly.in/question/13444792

Answered by pulakmath007
1

SOLUTION

TO SIMPLIFY

 \displaystyle \sf{ \frac{1}{x - 2}  +  \frac{4}{4 -  {x}^{2} } }

FORMULA TO BE IMPLEMENTED

We are aware of the formula

 \displaystyle \sf{ {a}^{2}  -  {b}^{2} = (a + b)(a - b) }

EVALUATION

 \displaystyle \sf{ \frac{1}{x - 2}  +  \frac{4}{4 -  {x}^{2} } }

 \displaystyle \sf{  = \frac{1}{x - 2}   -   \frac{4}{{x}^{2}  - 4} }

 \displaystyle \sf{  = \frac{1}{x - 2}   -   \frac{4}{{x}^{2}  -  {2}^{2} } }

 \displaystyle \sf{  = \frac{1}{x - 2}   -   \frac{4}{(x + 2)(x - 2) } }

 \displaystyle \sf{  =    \frac{(x + 2) - 4}{(x + 2)(x - 2) } }

 \displaystyle \sf{  =    \frac{(x + 2 - 4)}{(x + 2)(x - 2) } }

 \displaystyle \sf{  =    \frac{(x  - 2)}{(x + 2)(x - 2) } }

 \displaystyle \sf{  =    \frac{1}{(x + 2)} }

FINAL ANSWER

 \boxed{ \:  \:  \displaystyle \sf{ \frac{1}{x - 2}  +  \frac{4}{4 -  {x}^{2} } } =  \frac{1}{x + 2}  \:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. divide : (4x²- 100) ÷ 6(x+5)

https://brainly.in/question/15559404

2. Find the value of the expression a² – 2ab + b² for a = 1, b = 1

https://brainly.in/question/28961155

Similar questions