Math, asked by Jghb, 2 months ago

simplify {(2/3^2)^3}×1/3^-4×3^-1×6^-1

Answers

Answered by ItzDinu
11

\Huge\bf\maltese{\underline{\green{Answer°᭄}}}\maltese

\implies\large\bf{\underline{\red{VERIFIED✔}}}

Given : \\ \\Expression [\{(\frac{2}{3})^2\}^3\times (\frac{1}{3})^{-4}\times 3^{-1}\times (\frac{1}{6})][{(32)2}3×(31)−4×3−1×(61)] \\  \\ To  \: find : Simplify  \: the  \: expression ? \\  \\ Solution : \\  \\ Solving  \: the \:  expression, \\  \\ [\{(\frac{2}{3})^2\}^3\times (\frac{1}{3})^{-4}\times 3^{-1}\times (\frac{1}{6})][{(32)2}3×(31)−4×3−1×(61)] \\  \\ =[\{(\frac{4}{9})\}^3\times (3)^{4}\times\frac{1}{3} \times (\frac{1}{6})] \\  \\ =[{(94)}3×(3)4×31×(61)] \\  \\ =[\frac{64}{729}\times 81\times\frac{1}{3} \times \frac{1}{6}] \\  \\ =[72964×81×31×61] \\  \\ =\frac{32}{81}=8132 \\  \\ Therefore, [\{(\frac{2}{3})^2\}^3\times (\frac{1}{3})^{-4}\times 3^{-1}\times (\frac{1}{6})] \\  \\ =\frac{32}{81}[{(32)2}3×(31)−4×3−1×(61)] \\  \\ =8132

 \boxed{I \:Hope\: it's \:Helpful}

Similar questions