Math, asked by varsha145, 1 year ago

simplify= 2√6/√2+√3 +6√2/√6+√3 -8√3/√6+√2.

Answers

Answered by DaIncredible
7
Hey friend,
Here is the answer you were looking for:
 \frac{2 \sqrt{6} }{ \sqrt{2} +  \sqrt{3}  }  +  \frac{6 \sqrt{2} }{ \sqrt{6}  +  \sqrt{3} }  -  \frac{8 \sqrt{3} }{ \sqrt{6}  +  \sqrt{2} }  \\  \\ on \: rationalizing \: we \: get \\  \\  =  \frac{2 \sqrt{6} }{ \sqrt{2}  +  \sqrt{3} }  \times  \frac{ \sqrt{2}  -  \sqrt{3} }{ \sqrt{2}  -  \sqrt{3} }  +  \frac{6 \sqrt{2} } { \sqrt{6} +  \sqrt{3}  }  \\  \times  \frac{ \sqrt{6}  -  \sqrt{3} }{ \sqrt{6} -  \sqrt{3}  }  -  \frac{8 \sqrt{3} }{ \sqrt{6} +  \sqrt{2}  }  \times  \frac{ \sqrt{6} -  \sqrt{2}  }{ \sqrt{6} -  \sqrt{2}  }  \\  \\ using \: the \: identity \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{2 \sqrt{6} \times  \sqrt{2}  - 2 \sqrt{6}   \times  \sqrt{3} }{ {( \sqrt{2}) }^{2} -  {( \sqrt{3} )}^{2}  }  +  \frac{6 \sqrt{2}  \times  \sqrt{6}  - 6 \sqrt{2} \times  \sqrt{3}  }{ {( \sqrt{6}) }^{2} -  {( \sqrt{3}) }^{2}  }  -  \frac{8 \sqrt{3} \times  \sqrt{6} - 8  \sqrt{3}  \times  \sqrt{2}   }{ {( \sqrt{6}) }^{2} -  {( \sqrt{2} )}^{2}  }  \\  \\  =  \frac{2 \sqrt{12} - 2 \sqrt{18}  }{2 - 3}  +   \frac{6 \sqrt{12} - 6 \sqrt{6}  }{6 - 3}  -  \frac{8 \sqrt{18} - 8 \sqrt{6}  }{6 - 2}  \\  \\  =  \frac{2 \times 2 \sqrt{3}  - 2 \times 3 \sqrt{2} }{ - 1}  +  \frac{6 \times 2 \sqrt{3}  - 6 \sqrt{6} }{3}  -  \frac{8 \times 3 \sqrt{2}  - 8 \sqrt{6} }{4} \\  \\  =   - 4 \sqrt{3}  + 6 \sqrt{2}  +  \frac{12 \sqrt{3}  - 6 \sqrt{6} }{3}  -  \frac{24 \sqrt{2}  - 8 \sqrt{6} }{4}  \\  \\  =  \frac{ - 4 \sqrt{3}  \times 12 + 6 \sqrt{2} \times 12 + 12 \sqrt{3}  \times 4 - 6 \sqrt{6} \times 4 - (24 \sqrt{2}  \times 3 - 8 \sqrt{6} \times 3}{12}  \\  \\  =  \frac{ - 48 \sqrt{3} + 72 \sqrt{2} + 48 \sqrt{3} - 24 \sqrt{6}   - 72 \sqrt{2}  + 32 \sqrt{6} }{12}  \\  \\  =  \frac{ - 24 \sqrt{6}  + 32 \sqrt{6} }{12}  \\  \\   = \frac{8 \sqrt{6} }{12}  \\  \\  =  \frac{2 \sqrt{6} }{3}

Hope this helps!!!!

@Mahak24

Thanks...

varsha145: thank u
DaIncredible: most welcome dear... Glad to help!!!
vickySingh111: hlo
DaIncredible: thanks for brainliest
vickySingh111: it's OK
Similar questions