Math, asked by jamuda35, 1 month ago

simplify : 2√6/√2+√3 + 6√2/√6+√3 - 8√3/√6+√2​

Answers

Answered by Anonymous
2

Step-by-step explanation:

  \scriptsize\frac{2 \sqrt{6} }{ \sqrt{2} }  +  \sqrt{3}  +  \frac{6 \sqrt{2} }{ \sqrt{6} }   + \sqrt{3}  -  \frac{8 \sqrt{3} }{ \sqrt{6} }  +  \sqrt{2}

 \scriptsize \frac{2 \sqrt{6} }{ \sqrt{2} } -  \frac{8 \sqrt{3} }{ \sqrt{6} }    +  \frac{6 \sqrt{2} }{ \sqrt{6} }   + \sqrt{3}+  \sqrt{3}   +  \sqrt{2}

 \frac{2 \sqrt{6} }{ \sqrt{2} } -  \frac{8 \sqrt{3}  + 6 \sqrt{2}}{ \sqrt{6} }   + 2\sqrt{3}+  \sqrt{2}

  \scriptsize\frac{2 \sqrt{6} }{ \sqrt{2} } \times  \frac{ \sqrt{2} }{ \sqrt{2} }  -  \frac{8 \sqrt{3}  + 6 \sqrt{2}}{ \sqrt{6} }  \times  \frac{ \sqrt{6} }{ \sqrt{6} }   + 2\sqrt{3}+  \sqrt{2}

  \scriptsize\frac{2 \sqrt{12} }{ {2} }  -  \frac{\sqrt{6}(8 \sqrt{3}  + 6 \sqrt{2})}{ {6} }  + 2\sqrt{3}+  \sqrt{2}

  \scriptsize\frac{2 \sqrt{12} }{ {2} }  -  \frac{8 \sqrt{18}  + 6 \sqrt{12}}{ {6} }  + 2\sqrt{3}+  \sqrt{2}

  \scriptsize\frac{2 \times  \sqrt{4}  \times  \sqrt{3} }{ {2} }  -  \frac{8  \times \sqrt{9}  \times  \sqrt{2}  + 6  \times \sqrt{4} \times  \sqrt{3} }{ {6} }  + 2\sqrt{3}+  \sqrt{2}

  \scriptsize\frac{2 \times 2 \times  \sqrt{3} }{ {2} }  -  \frac{8  \times 3  \times  \sqrt{2}  + 6  \times 2 \times  \sqrt{3} }{ {6} }  + 2\sqrt{3}+  \sqrt{2}

  \scriptsize\frac{4 \times  \sqrt{3} }{ {2} }  -  \frac{24\times  \sqrt{2}  +  12 \times  \sqrt{3} }{ {6} }  + 2\sqrt{3}+  \sqrt{2}

  \scriptsize\frac{4 \times  \sqrt{3} }{ {2} }  -  \frac{12(2 \sqrt{2}  +   \sqrt{3} )}{ {6} }  + 2\sqrt{3}+  \sqrt{2}

  \scriptsize\frac{ \cancel4 \times  \sqrt{3} }{ { \cancel2} }  -  \frac{ \cancel{12}(2 \sqrt{2}  +   \sqrt{3} )}{ { \cancel6} }  + 2\sqrt{3}+  \sqrt{2}

 \scriptsize2 \sqrt{3}  - 2 (\sqrt{2}  +  \sqrt{3}) + 2 \sqrt{3}   +  \sqrt{2}

\scriptsize2 \sqrt{3}  - 2 \sqrt{2}  + 2 \sqrt{3}  + 2 \sqrt{3}  +  \sqrt{2}

\scriptsize2 \sqrt{3}    + 2 \sqrt{3}  + 2 \sqrt{3}  +  \sqrt{2} - 2 \sqrt{2}

6 \sqrt{3}  -  \sqrt{2}

I hope it is helpful

Similar questions