Math, asked by snandira, 3 months ago

simplify 2/7^m÷2/7^2-m=2/^6​

Answers

Answered by abhi46246123
1

Answer:

Answer:

On simplifying we get \frac{2}{\sqrt{5}-\sqrt{3}}-\frac{1}{\sqrt{3}+\sqrt{2}}-\frac{3}{\sqrt{5}-\sqrt{2}}=0

5

3

2

3

+

2

1

5

2

3

=0

Step-by-step explanation:

Given Expression: \frac{2}{\sqrt{5}-\sqrt{3}}-\frac{1}{\sqrt{3}+\sqrt{2}}-\frac{3}{\sqrt{5}-\sqrt{2}}

5

3

2

3

+

2

1

5

2

3

we rationalize the denominator of each term of the expression,

\implies\frac{2}{\sqrt{5}-\sqrt{3}}\times\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}-\frac{1}{\sqrt{3}+\sqrt{2}}\times\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}-\frac{3}{\sqrt{5}-\sqrt{2}}\times\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}+\sqrt{2}}⟹

5

3

2

×

5

+

3

5

+

3

3

+

2

1

×

3

2

3

2

5

2

3

×

5

+

2

5

+

2

\implies\frac{2(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}-\frac{1(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}-\frac{3(\sqrt{5}+\sqrt{2})}{(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})}⟹

(

5

3

)(

5

+

3

)

2(

5

+

3

)

(

3

+

2

)(

3

2

)

1(

3

2

)

(

5

2

)(

5

+

2

)

3(

5

+

2

)

\implies\frac{2(\sqrt{5}+\sqrt{3})}{(\sqrt{5})^2-(\sqrt{3})^2}-\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3})^2-(\sqrt{2})^2}-\frac{3(\sqrt{5}+\sqrt{2})}{(\sqrt{5})^2-(\sqrt{2})^2}⟹

(

5

)

2

−(

3

)

2

2(

5

+

3

)

(

3

)

2

−(

2

)

2

3

2

(

5

)

2

−(

2

)

2

3(

5

+

2

)

\implies\frac{2(\sqrt{5}+\sqrt{3})}{5-3}-\frac{\sqrt{3}-\sqrt{2}}{3-2}-\frac{3(\sqrt{5}+\sqrt{2})}{5-2}⟹

5−3

2(

5

+

3

)

3−2

3

2

5−2

3(

5

+

2

)

\implies\frac{2(\sqrt{5}+\sqrt{3})}{2}-\frac{\sqrt{3}-\sqrt{2}}{1}-\frac{3(\sqrt{5}+\sqrt{2})}{3}⟹

2

2(

5

+

3

)

1

3

2

3

3(

5

+

2

)

\implies\sqrt{5}+\sqrt{3}-\sqrt{3}+\sqrt{2}-\sqrt{5}-\sqrt{2}⟹

5

+

3

3

+

2

5

2

\implies0⟹0

Therefore, On simplifying we get \frac{2}{\sqrt{5}-\sqrt{3}}-\frac{1}{\sqrt{3}+\sqrt{2}}-\frac{3}{\sqrt{5}-\sqrt{2}}=0

5

3

2

3

+

2

1

5

2

3

=0

Similar questions