Math, asked by Anonymous, 1 year ago

simplify 2 root 3 ( 3 + root 5 ) ( 1 - root 5 ) / 1 + root 5

Answers

Answered by RumaanNaik
8
 · 2 - √3 ---( 1 ) b ) 2 / ( √5 - √ 3 ) = 2 ( √5 + √3 ) / [ ( √5 - √3 )(√5 + √3 ) ] = 2( √5 + √3 ) / ( 5 - 3 ) = 2 ( √5 + √3 )/ 2



Answered by Anonymous
39
Answer :


2 \sqrt{3} (3 +  \sqrt{5} ) \times  \frac{(1 -  \sqrt{5} )}{1 +  \sqrt{5} }  \\  \\ multiply \: 2 \sqrt{3}  \: by \:  \frac{(1 -  \sqrt{5} )}{1 +  \sqrt{5} }  \\  \\  \frac{2 \sqrt{3} \times (1 -  \sqrt{5} ) }{1 +  \sqrt{5} }  \times (3 +  \sqrt{5} ) \\  \\ multiply \:  \\  \\  \frac{2 \sqrt{3}(1 -  \sqrt{5}  )(3 +  \sqrt{5}) }{1 +  \sqrt{5} }  \\  \\  \frac{2 \sqrt{3}  (1 -  \sqrt{5}  ) \times 3 + 2 \sqrt{3}  (1 -  \sqrt{5} ) \sqrt{5} }{1 +  \sqrt{5} }


 \frac{6 \sqrt{3} - 6 \sqrt{15}   + 2 \sqrt{15} - 2 \sqrt{75}  }{1 +  \sqrt{5} }  \\  \\  - 2 \sqrt{75}  =  - 10 \sqrt{3}  \\  \\  \frac{6 \sqrt{3} - 6 \sqrt{15}  + 2 \sqrt{15} - 10 \sqrt{3}   }{1 +  \sqrt{5} }  \\  \\ collect \: the \: like \: terms \\  \\ we \: get \\  \\  \frac{6 \sqrt{3}  - 10 \sqrt{3}  - 6 \sqrt{15 }  + 2 \sqrt{15} }{1 +  \sqrt{5} }  \\  \\  \frac{ - 4 \sqrt{3} - 4 \sqrt{15}  }{1 +  \sqrt{5} }  \\  \\  - 4  \: and \:  \sqrt{3} \: are \: common \: factor \\  \\  \frac{ - 4 \sqrt{3} (  1+  \sqrt{5}  )}{1 +  \sqrt{5} }  \\  \\ reduce \: (1 +  \sqrt{5} ) \: from \: 1 +  \sqrt{5}  \\  \\ we \: get \:  - 4 \sqrt{3}


HOPE IT WOULD HELP YOU
Similar questions