Simplify (2/tanA)+(4/tanB)?
Please gave me a solution of this question.
Answers
We will prove tanA +tanB using equation tan(a+b).
First, you need to write this expression correctly, using brackets:
tan(a+b) = (tan a + tan b)/(1 - tan a*tan b)
We'll prove this identity, using the fact that tangent function is a ratio of :
tan (a+b) = sin (a+b)/cos (a+b)
We'll use the following identities:—
# sin (a+b) = sin a*cos b + sin b*cos a
# cos (a+b) = cos a*cos b - sin a*sin b
tan (a+b) = (sin a*cos b + sin b*cos a)/(cos a*cos b - sin a*sin b)
We'll force factor cos a*cos b, both numerator and denominator, creating the tangent functions within brackets:
tan (a+b) = cos a*cos b( tan a + tan b)/cos a*cos b(1 - tan a*tan b)
We'll simplify and now you get:
tan (a+b) = (tan a + tan b)/(1 - tan a*tan b)
Now rearranging;
Formula of tan (A+B) =
tanA+ tanB =tan(a+b) ×(1-tanA×tanB)
Or
We know that ;-
tanA+ tanB = sinA/cosA + sinB/cosB
=( sinAcosB+sinBcosA) /cosAcosB
=sin(A+B) /cosAcosB
Therefore;-
tanA+ tanB =sin(A+B)/cosAcosB
Please mark as brainliest :-) (๑'ᴗ')ゞ(๑'ᴗ')ゞ
Thanks ('-'*)♪('-'*)♪