English, asked by bunnubablu, 1 year ago

simplify 2^X+1 + 2^X / 2^X+1 - 2^x​

Answers

Answered by MyselfPk
2

 \frac{ {2}^{x + 1} +  {2}^{x}  }{ {2}^{x + 1}  -  {2}^{x} }   \\  =  >    \frac{ {2}^{x} \times  {2}^{1}   +  {2}^{x} }{ {2}^{x}  \times  {2}^{1} -  {2}^{x}  }   \\ on \: taking \:  {2}^{x} common \: in \: both \: numerator \: and \: denominator \: we \: get \:  \\  =  >   \frac{{2}^{x} (2 + 1)}{ {2}^{x} (2 - 1 )} \\  =  >  \frac{ {2}^{x}  \times 3}{ {2}^{x}  \times 1}  \\  =  > 3

THERE YOU GO!!!.....


MyselfPk: now ok??
MyselfPk: Bye bro it's late over here.....
MyselfPk: and there too i think
MyselfPk: so go to sleep
MyselfPk: bye ;)
bunnubablu: thanks
bunnubablu: good night
Answered by saipraneeth1307
0

2^(x+1) - 2^(1-x) =1

2^x*2 - 2/2^x = 1

Let say 2^x =y,then

2y - 2/y =1

Multiplying both sides by y,we get

2y^2 -2=y

2y^2- y - 2=0

y=[1+-sqrt(1+16)]/4

y=[1+-sqrt(17)]/4

2^x=[1+-sqrt(17)]/4

But 2^x >1

So,2^x= [1+sqrt(17)]/4

Similar questions