Math, asked by Rithika1904, 10 months ago

simplify (2e^2/3)^3 * (9e^2)^3/2 / e^-3

Answers

Answered by Anonymous
48

Answer:

\large \bold\red{ 8 {e}^{12} }

Step-by-step explanation:

Given,

 { (\frac{2 {e}^{2} }{3}) }^{3}  \times  \frac{ {(9 {e}^{2}) }^{ \frac{3}{2} } }{ {e}^{ - 3} }

Further Simplifying,

We get,

 =  {( \frac{2}{3}) }^{3}  \times  {e}^{6}  \times  {9}^{ \frac{3}{2} }  \times  {e}^{(2 \times  \frac{3}{2}) }  \times  {e}^{3}  \\  \\  =  \dfrac{8}{27}  \times   {( {3}^{2}) }^{ \frac{3}{2} }  \times  {e}^{(6 + 3)}   \times  {e}^{3}  \\  \\  =  \frac{8}{27}  \times  {3}^{3}  \times  {e}^{9}  \times  {e}^{3}  \\  \\  =    \dfrac{8}{27}  \times 27 \times  {e}^{(9 + 3)}  \\  \\  = \large \bold{ 8 {e}^{12} }

Properties Used :-

  •  {x}^{m}  \times  {x}^{n}  =  {x}^{(m + n)}
  •  {x}^{m}  \times  {y}^{m}  =  {(xy)}^{m}
  •  {x}^{ - m}  =  \dfrac{1}{ {x}^{m} }

Answered by Anonymous
128

\bold{\large{\underline{\underline{\sf{StEp\:by\:stEp\:explanation:}}}}}

Given »

\tt{ (\frac{2 {e}^{2} }{3}) }^{3} \times \frac{ {(9 {e}^{2}) }^{ \frac{3}{2} } }{ {e}^{ - 3} }

By Simplifying given equation , We get »

\begin{lgathered}=\sf {( \frac{2}{3}) }^{3} \times {e}^{6} \times {9}^{ \frac{3}{2} } \times {e}^{(2 \times \frac{3}{2}) } \times {e}^{3} \\ \\ = \sf\dfrac{8}{27} \times {( {3}^{2}) }^{ \frac{3}{2} } \times {e}^{(6 + 3)} \times {e}^{3} \\ \\ =\sf \frac{8}{27} \times {3}^{3} \times {e}^{9} \times {e}^{3} \\ \\ =\sf \dfrac{8}{27} \times 27 \times {e}^{(9 + 3)} \\ \\ =\tt \bold{ 8 {e}^{12} }\end{lgathered}

Similar questions