Math, asked by manpreet9910, 11 months ago

simplify 2underrootsix over underroot2 plus underroot3​

Answers

Answered by ihrishi
0

Answer:

 \frac{2 \sqrt{6} }{ \sqrt{2}  +  \sqrt{3} }  \\ multiplying \: numerator \: and \:  \\ denominatr \: by \: the \: conjugate \:  \\ of \:  \sqrt{2}  +  \sqrt{3}  \: we \: find :  \\  \frac{2 \sqrt{6} }{ \sqrt{2}  +  \sqrt{3} } =  \frac{2 \sqrt{6} }{ \sqrt{2}  +  \sqrt{3} } \times  \frac{ \sqrt{2}    -  \sqrt{3}}{ \sqrt{2}   -   \sqrt{3}}  \\  =  \frac{2 \sqrt{6} ( \sqrt{2}   -  \sqrt{3})}{ { (\sqrt{2} })^{2} - (\sqrt{3}) ^{2} }  \\  = \frac{2 \sqrt{6} ( \sqrt{2}   -  \sqrt{3})}{ { (\sqrt{2} })^{2} - (\sqrt{3}) ^{2} }  \\  =  \frac{2( \sqrt{6 \times 2} -  \sqrt{6 \times 3}) }{2 - 3}  \\  = \frac{2( \sqrt{2 \times 2 \times 3) }  -  \sqrt{2 \times 3 \times 3}) }{2 - 3} \\  = \frac{2( 2\sqrt{3}  -  3\sqrt{2}) }{ - 1}  \\  =  - (4 \sqrt{3}  - 6 \sqrt{2} ) \\  = 6 \sqrt{2}  - 4 \sqrt{3}

Similar questions