Math, asked by bordexams, 2 months ago

simplify 3√2−2√3÷√8+√27​

Answers

Answered by pratibha6258
0

Answer:

8.21 is the answer

Step-by-step explanation:

I hope is it helpful

Answered by SachinGupta01
8

 \large{ \sf \underline{Solution  - }}

 \sf To  \: rationalise   \:    =  \:  \dfrac{3 \sqrt{2} - 2 \sqrt{3}}{\sqrt{8} + \sqrt{27} }

 \sf  \dashrightarrow  \dfrac{3 \sqrt{2} - 2 \sqrt{3}}{2 \sqrt{2} + 3 \sqrt{3} }

 \sf  \dashrightarrow  \dfrac{3 \sqrt{2} - 2 \sqrt{3}}{2 \sqrt{2} + 3 \sqrt{3} }  \times  \dfrac{2 \sqrt{2}  -  3 \sqrt{3}}{2 \sqrt{2}  -  3 \sqrt{3}}

 \sf Combine  \: the \:  fractions,

 \sf  \dashrightarrow  \dfrac{(3 \sqrt{2} - 2 \sqrt{3})(2 \sqrt{2}  -  3 \sqrt{3})}{(2 \sqrt{2} + 3 \sqrt{3} )(2 \sqrt{2}  -  3 \sqrt{3})}

 \sf \underline{Solving \:  denominator} ,

 \sf We  \: know  \: that,

\sf \dashrightarrow \boxed{ \tt (a + b)(a - b) = a^{2} - b ^{2}}

 \bf So ,

 \sf  \dashrightarrow  \dfrac{(3 \sqrt{2} - 2 \sqrt{3})(2 \sqrt{2}  -  3 \sqrt{3})}{(2 \sqrt{2})^{2}  - (3 \sqrt{3} )^{2} }

 \sf  \dashrightarrow  \dfrac{(3 \sqrt{2} - 2 \sqrt{3})(2 \sqrt{2}  -  3 \sqrt{3})}{8  - 27 }

 \sf  \dashrightarrow  \dfrac{(3 \sqrt{2} - 2 \sqrt{3})(2 \sqrt{2}  -  3 \sqrt{3})}{ - 19 }

 \sf \underline{Solving \:  numerator},

 \sf  \dashrightarrow  \dfrac{3 \sqrt{2} (2 \sqrt{2}  -  3 \sqrt{3})- 2 \sqrt{3}(2 \sqrt{2}  -  3 \sqrt{3})}{ - 19 }

 \sf  \dashrightarrow  \dfrac{12 - 9 \sqrt{6} - 4 \sqrt{6}  + 18}{ - 19 }

 \sf  \dashrightarrow  \dfrac{30 - 13 \sqrt{6} }{ - 19 }

 \sf  \dashrightarrow   - \dfrac{30 - 13 \sqrt{6} }{ 19 }

 \bf Hence,

 \sf On \: rationalising \: we \: got,

 \bf \dashrightarrow - \dfrac{30 - 13 \sqrt{6} }{ 19 }

Similar questions