Math, asked by icyqueen, 1 year ago

simplify (3√2/√6-√3)-(4√3/√6-√2)+(2√3/√6+√2)

Answers

Answered by DaIncredible
5
Heya there !!!
Here is the answer you were looking for:
 \frac{3 \sqrt{2} }{ \sqrt{6}  -  \sqrt{3} }  -  \frac{4 \sqrt{3} }{ \sqrt{6} -  \sqrt{2}  }  +  \frac{2 \sqrt{3} }{ \sqrt{6}  +  \sqrt{2} }  \\

On rationalizing the denominator we get,

 \frac{3 \sqrt{2} }{ \sqrt{6}  -  \sqrt{3} }  \times  \frac{ \sqrt{6} +  \sqrt{3}  }{ \sqrt{6}  +  \sqrt{3} }  -  \frac{4 \sqrt{3} }{ \sqrt{6}  -  \sqrt{2} }  \times  \frac{ \sqrt{6} +  \sqrt{2}  }{ \sqrt{6} +  \sqrt{2}  }  +  \frac{2 \sqrt{3} }{ \sqrt{6} +  \sqrt{2}  }  \times  \frac{ \sqrt{6}  -  \sqrt{2} }{ \sqrt{6} -  \sqrt{2}  }  \\  \\  =  \frac{3 \sqrt{2} ( \sqrt{6} +  \sqrt{3}  )}{ {( \sqrt{6} )}^{2} -  {( \sqrt{3} )}^{2}  }  -  \frac{4 \sqrt{3}( \sqrt{6} +  \sqrt{2} )  }{ {( \sqrt{6} )}^{2}  -  {( \sqrt{4} )}^{2} }  +   \frac{2 \sqrt{3} ( \sqrt{6}  -  \sqrt{2} )}{ {( \sqrt{6}) }^{2} -  {( \sqrt{2} )}^{2}  }  \\  \\  =  \frac{3 \sqrt{12}  + 3 \sqrt{6} }{6 - 3}  -  \frac{4 \sqrt{18}  - 4 \sqrt{6} }{6 - 2}  +  \frac{3 \sqrt{18}  - 2 \sqrt{6} }{6 - 2}  \\  \\  =  \frac{3 \sqrt{2 \times 2 \times 3}  + 3 \sqrt{6} }{3}  -  \frac{4 \sqrt{3 \times 3 \times 2}  - 4 \sqrt{6} }{4}  +  \frac{3 \sqrt{3 \times 3 \times 2} - 2 \sqrt{6}  }{4}  \\  \\  =  \frac{6 \sqrt{3} + 3 \sqrt{6}  }{3}  -  \frac{12 \sqrt{2}  - 4 \sqrt{6} }{4}  +  \frac{9 \sqrt{2}  - 2 \sqrt{6} }{4}  \\  \\  = 2 \sqrt{3}  +  \sqrt{6}  - 3 \sqrt{2}  +  \sqrt{6}  +  \frac{9 \sqrt{2} - 2 \sqrt{6}  }{4}  \\  \\  =  \frac{2 \sqrt{3} \times 4 + 2 \sqrt{6}  \times 4 - 3 \sqrt{2}   \times 4 + 9 \sqrt{2}  - 2 \sqrt{6} }{4}  \\  \\  =  \frac{8 \sqrt{3} + 8 \sqrt{6}  - 12 \sqrt{2}  + 9 \sqrt{2}  - 2 \sqrt{6}  }{4}  \\  \\  =  \frac{ - 3 \sqrt{2}  + 6 \sqrt{6} + 8 \sqrt{3}  }{4}

Hope this helps!!!

@Mahak24

Thanks...
☺☺

icyqueen: thank u so much
Similar questions