Math, asked by neetashelke6201, 1 month ago

simplify : 3√2 + √8 - √50​

Answers

Answered by MrMonarque
58

||SOLUTION||

3 \sqrt{2}  +  \sqrt{8}   -  \sqrt{50} \\ 3 \sqrt{2}   +  \sqrt{(4 \times 2)}  -  \sqrt{(25 \times 2)}  \\ 3 \sqrt{2}  +  \sqrt{( {2}^{2} \times 2) }  -  \sqrt{ ({5}^{2} \times 2) }  \\ 3 \sqrt{2}  + 2 \sqrt{2}  - 5 \sqrt{2}  \\ (3 + 2 - 5) \sqrt{2}  \\ 0 \sqrt{2}  \\ 0

Required Value

  • \longmapsto\;\bold{0}

\tt{@MrMonarque}

Hope It Helps You ✌️

Answered by llMrCreepyll
8

Gíνєи :-

Simplify :-

 \sf{3 \sqrt{2}  +  \sqrt{8}  -  \sqrt{50} }

иѕωєя :-

 \sf{3 \sqrt{2} +  \sqrt{8}  -  \sqrt{50}  }

  • Factor $ 8=2^{2}\times 2$. Rewrite the square root of the product $\sqrt{2^{2}\times 2}$ as the product of square roots $\sqrt{2^{2}}\sqrt{2}$. Take the square root of $2^{2}$.

 \leadsto \sf{3\sqrt{2}+2\sqrt{2}-\sqrt{50} }

  • Combine $ 3\sqrt{2} $ and $ 2\sqrt{2}$ to get $ 5\sqrt{2}$.

 \leadsto \sf{5\sqrt{2}-\sqrt{50} }

  • Factor $50=5^{2}\times 2$. Rewrite the square root of the product $\sqrt{5^{2}\times 2} $ as the product of square roots $ \sqrt{5^{2}}\sqrt{2}$. Take the square root of $ 5^{2}$.

 \leadsto \sf{5\sqrt{2}-5\sqrt{2} }

  • Combine $5\sqrt{2}$ and $ -5\sqrt{2}$ to get 0.

 \implies \bf \red{0}

∴ Hence, the simplification of the given equation will be resulting to 0.

 \\ \\ \\

⠀⠀⠀⠀⠀⠀— llMrCrεεpyll —

Similar questions