Math, asked by sravanthihema2613, 6 months ago

simplify 3√5-√7/3√3+√2 by rationalsing the denominator​

Answers

Answered by Bidikha
4

Question -

Simplify \:  \:  \frac{3 \sqrt{5}  -  \sqrt{7} }{3 \sqrt{3}  +  \sqrt{2} }  \: by \:  \: \\  rationalising \:  \: the \:  \: denominator

Solution -

 =  \frac{3 \sqrt{5}  -  \sqrt{7} }{3 \sqrt{3}  +  \sqrt{2} }

By rationalising the denominator we will get -

 =  \frac{3 \sqrt{5}  -  \sqrt{7} }{3 \sqrt{  3}  +  \sqrt{2} }  \times  \frac{3 \sqrt{3} -  \sqrt{2}  }{3 \sqrt{3} -  \sqrt{2}  }

Using the identity (a+b) (a-b) =a²-b²

 =  \frac{3 \sqrt{5} (3 \sqrt{3}  -  \sqrt{2} ) -  \sqrt{7} (3 \sqrt{3} -  \sqrt{2})  }{ ({3 \sqrt{3} )}^{2} -  {( \sqrt{2}) }^{2}  }

 =  \frac{9 \sqrt{15} - 3 \sqrt{10}  - 3 \sqrt{21} +  \sqrt{14}   }{27 - 2}

 =  \frac{9 \sqrt{15}  - 3 \sqrt{10} - 3 \sqrt{21} +  \sqrt{14}   }{25}

Related Indentities -

1) \sqrt{ab}  =  \sqrt{a}  \sqrt{b}

2) \sqrt{ \frac{a}{b} }  =  \frac{ \sqrt{a} }{ \sqrt{b} }

3)( \sqrt{a}  +  \sqrt{b} )( \sqrt{a} -  \sqrt{b}) = a - b

4)(a +  \sqrt{b} )(a -  \sqrt{b} ) =  {a}^{2}  - b

5)( \sqrt{a}  +  \sqrt{b} )( \sqrt{c}  +  \sqrt{d}) =  \sqrt{ac}   +  \sqrt{ad}  +  \sqrt{bc}  +  \sqrt{bd}

6) {( \sqrt{a}  +  \sqrt{b}) }^{2}  = a + 2 \sqrt{ab}  + b

Similar questions