Simplify
(3a-2b)(9a^2+6ab+4b^2)-(2a+3b)-(4a^2-6ab+9b^2)
Answers
Answered by
0
Answer:
19a3 - 35b3
Step-by-step explanation:
3a-2b)•(((9•(a2))+6ab)+(4•(b2))))-((2a+3b)•(((4•(a2))-6ab)+32b2))
Step 2 :
(3a-2b)•(((9•(a2))+6ab)+(4•(b2))))-((2a+3b)•((22a2-6ab)+32b2))
Step 3 :(3a-2b)•(((9•(a2))+6ab)+(4•(b2))))-(2a+3b)•(4a2-6ab+9b2)
Step 4 :(3a-2b)•(((9•(a2))+6ab)+22b2))-(2a+3b)•(4a2-6ab+9b2)
Step 5 :
- (3a-2b)•((32a2+6ab)+22b2))-(2a+3b)•(4a2-6ab+9b2)
- Step 6 :
- 3a-2b)•(9a2+6ab+4b2)-(2a+3b)•(4a2-6ab+9b2)
- Step 7 :
- Trying to factor as a Difference of Cubes:
- 7.1 Factoring: 19a3-35b3
- Theory : A difference of two perfect cubes, a3 - b3 can be factored into
- (a-b) • (a2 +ab +b2)
- Proof : (a-b)•(a2+ab+b2) =
- a3+a2b+ab2-ba2-b2a-b3 =
- a3+(a2b-ba2)+(ab2-b2a)-b3 =
- a3+0+0+b3 =
- a3+b3
- Check : 19 is not a cube !!
- Ruling : Binomial can not be factored as the difference of two perfect cubes
- Final result :
- 19a3 - 35b3
- hope this will help you.So I am requesting you please mark me as a brainlist please.
Similar questions
Social Sciences,
6 months ago
Math,
6 months ago
Chemistry,
1 year ago
Math,
1 year ago
Chemistry,
1 year ago
Social Sciences,
1 year ago