Math, asked by kishorkevadiya321, 9 months ago

simplify ( 4+√3) (4-√3)​

Answers

Answered by MaIeficent
15

Step-by-step explanation:

{\red{\underline{\underline{\bold{Given:-}}}}}

 \frac{4 +  \sqrt{3} }{4 -  \sqrt{3} }

{\blue{\underline{\underline{\bold{Concept\:used\:here-}}}}}

  • Rationalizing the denominator.

{\green{\underline{\underline{\bold{Solution:-}}}}}

 \frac{4 +  \sqrt{3} }{4 -  \sqrt{3} }

By rationalizing the denominator:-

 \frac{4 +  \sqrt{3} }{4 -  \sqrt{3} }  \times  \frac{4 +  \sqrt{3} }{4 +  \sqrt{3} }  \\  \\   = \frac{ {(4 +  \sqrt{3} )}^{2} }{(4 -  \sqrt{3} )(4 +  \sqrt{3} )}  \:  \:  \: ( \therefore(a + b)(a - b) =  {a}^{2}  -  {b}^{2} ) \\  \\  =  \frac{ {(4 +  \sqrt{3}) }^{2} }{ {4}^{2} -  {( \sqrt{3} )}^{2}  }  \:  \:  \: ( \therefore( { a + b)}^{2}  =  {a}^{2}  + 2ab  +  {b}^{2} ) \\  \\  =  \frac{ {4}^{2}  +  { (\sqrt{3})}^{2} + 2 \times 4 \times  \sqrt{3}  }{4 - 3}  \\  \\  = \frac{16 + 3 + 8 \sqrt{3} }{1}  \\  \\  = 19  + 8\sqrt{3}

Therefore :-

 \frac{4 +  \sqrt{3} }{4 -  \sqrt{3} }  \\

= \boxed{19 + 8 \sqrt{3} }

Similar questions