Math, asked by icyqueen, 1 year ago

simplify (5+2√3/7+4√3)

Answers

Answered by Anonymous
16
Heya


( 5 + 2√3 ) / ( 7 + 4√3 )

= ( 5 + 2√3 ) / ( 7 + 4√3 ) × ( 7 – 4√3 ) / ( 7 – 4√3 )

= ( 5 + 2√3 ) ( 7 – 4√3 ) / [ ( 7)² – ( 4√3)² ]

= [ 5 ( 7 – 4√3 ) + 2√3 ( 7 – 4√3 ) ] / ( 49 – 48 )

= ( 35 – 20√3 + 14√3 – 24 ) / 1

= 11 – 6√3

Answered by Salmonpanna2022
2

Answer:

⟹11 - 6 \sqrt{3} \: \:  \:   \tt \red{ Ans}. \\  \\

Step-by-step explanation:

Given that:-

 \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \\  \\

What to do:-

To rationalise the denominator

Solution:-

We have,

 \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \\  \\

The denominator is 5+2√3. Multiplying the numerator and denominator by 7-4√3,

we get,

 ⟹\frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }  \\  \\

⟹ \frac{(5 + 2 \sqrt{3} )(7 - 4 \sqrt{3}) }{(7 + 4 \sqrt{3} )(7 - 4 \sqrt{3}) }  \\  \\

⬤ Applying Algebraic Identity

(a+b)(a-b) = a² - b² to the denominator

We get,

⟹ \frac{(5 + 2 \sqrt{3} )(7 - 4 \sqrt{3}) }{(7 {)}^{2} - (4 \sqrt{3} {)}^{2}   }  \\  \\

⟹ \frac{35 + 14 \sqrt{3} - 20 \sqrt{3} - 8 \sqrt{3 \times 3}   }{49 - 48}  \\  \\

⟹ \frac{35 + 14 \sqrt{3} - 20 \sqrt{3}  - 24 }{1}  \\  \\

⟹(35 - 24) - 6 \sqrt{3}  \\  \\

⟹11 - 6 \sqrt{3} \: \:  \:   \tt \red{ Ans}. \\  \\

Hence the denominator is rationalised.

  • I hope it's help with...☺
Similar questions