Math, asked by sabrina97, 7 months ago

simplify 6/2√3+√6 + √6/√3+√2 - 4√3/√6√2​

Answers

Answered by sijuabrahamap
1

Answer:

Answer - 0

Step-by-step explanation:

Here, the given expression is,

\frac{6}{2\sqrt{3}-\sqrt{6}}+\frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}}-\frac{4\sqrt{3}}{\sqrt{6}-\sqrt{2}}

2

3

6

6

+

3

+

2

6

6

2

4

3

By rationalizing,

=\frac{6}{2\sqrt{3}-\sqrt{6}}\times \frac{2\sqrt{3}+\sqrt{6}}{2\sqrt{3}+\sqrt{6}}+\frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}}\times \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}-\frac{4\sqrt{3}}{\sqrt{6}-\sqrt{2}}\times \frac{\sqrt{6}+\sqrt{2}}{\sqrt{6}+\sqrt{2}}=

2

3

6

6

×

2

3

+

6

2

3

+

6

+

3

+

2

6

×

3

2

3

2

6

2

4

3

×

6

+

2

6

+

2

=\frac{6(2\sqrt{3}+\sqrt{6})}{6}+\frac{\sqrt{6}(\sqrt{3}-\sqrt{2})}{1}-\frac{4\sqrt{3}(\sqrt{6}+\sqrt{2})}{4}=

6

6(2

3

+

6

)

+

1

6

(

3

2

)

4

4

3

(

6

+

2

)

( (a+b)(a-b) = a² - b² )

=2\sqrt{3}+\sqrt{6}+\sqrt{6}(\sqrt{3}-\sqrt{2})-\sqrt{3}(\sqrt{6}+\sqrt{2})=2

3

+

6

+

6

(

3

2

)−

3

(

6

+

2

)

=2\sqrt{3}+\sqrt{6}+\sqrt{18}-\sqrt{12}-\sqrt{18}-\sqrt{6}=2

3

+

6

+

18

12

18

6

=2\sqrt{3}+\sqrt{6}+3\sqrt{2}-2\sqrt{3}-3\sqrt{2}-\sqrt{6}=2

3

+

6

+3

2

−2

3

−3

2

6

( Because, √18 = √(9×2) = √9 × √2 = 3√2 and √12 = √(4×3) = √4 × √3 = 2√3 )

=0=0

Answered by bourai244
0

Step-by-step explanation:

6 √6. 4√3

------. + √6 + ----------- - ----------

2√3. √3+√2. √6√2

6×√3. √6(√3-√2). 4√3

-------------. + √6. + -----------------------. - ------------

2×√3×√3. (√3+√2)(√3-√2). √3√2√2

√3 +√6 + √6(√3-√2) - 2

√3+√6 + √18 - √12 -2

√3+ √6 + 3√2 - 2√3 - 2

√6 + 3√2 - √3 -2

Similar questions