Math, asked by ShreshthGupta1, 1 year ago

Simplify 6/2root3-root6+root6/root3+root2-4root3/root6-root2

Answers

Answered by pinquancaro
162

Answer:

\frac{6}{2\sqrt3-\sqrt6}+\frac{\sqrt6}{\sqrt3+\sqrt2}-\frac{4\sqrt3}{\sqrt6-\sqrt2}=0

Step-by-step explanation:

Given : Expression \frac{6}{2\sqrt3-\sqrt6}+\frac{\sqrt6}{\sqrt3+\sqrt2}-\frac{4\sqrt3}{\sqrt6-\sqrt2}

To find : Simplify the expression ?

Solution :

Expression \frac{6}{2\sqrt3-\sqrt6}+\frac{\sqrt6}{\sqrt3+\sqrt2}-\frac{4\sqrt3}{\sqrt6-\sqrt2}

Rationalize each term,

=\frac{6}{2\sqrt3-\sqrt6}\times \frac{2\sqrt3+\sqrt6}{2\sqrt3+\sqrt6}+\frac{\sqrt6}{\sqrt3+\sqrt2}\times \frac{\sqrt3-\sqrt2}{\sqrt3-\sqrt2}-\frac{4\sqrt3}{\sqrt6-\sqrt2}\times \frac{\sqrt6+\sqrt2}{\sqrt6+\sqrt2}

=\frac{6(2\sqrt3+\sqrt6)}{12-6}+\frac{\sqrt6(\sqrt3-\sqrt2)}{3-2}-\frac{4\sqrt3(\sqrt6+\sqrt2)}{6-2}

=\frac{6(2\sqrt3+\sqrt6)}{6}+\frac{\sqrt6(\sqrt3-\sqrt2)}{1}-\frac{4\sqrt3(\sqrt6+\sqrt2)}{4}

=2\sqrt3+\sqrt6+3\sqrt 2-2\sqrt3-3\sqrt2-\sqrt6

=0

Therefore, \frac{6}{2\sqrt3-\sqrt6}+\frac{\sqrt6}{\sqrt3+\sqrt2}-\frac{4\sqrt3}{\sqrt6-\sqrt2}=0

Answered by rajkhetan2004
8

Answer:

here is my answer , please like

Attachments:
Similar questions