Math, asked by goenkan, 1 year ago

Simplify 64 ^1/3 (64^1/3 -64^2/3)
urgent it's my HHW question​

Answers

Answered by shashank2576
12

Step-by-step explanation:

64^1/3(64^1/3-64^2/3)

(4^3)^1/3 (4^3)^1/3 - (4^3)^2/3

4(4 - 16)

4*-12

-48


goenkan: is it right
shashank2576: yes I think so
goenkan: Don't think
goenkan: r u sure
shashank2576: yes
goenkan: Thanks
shashank2576: plz mark me as brainliest
goenkan: can u tell how? ??
shashank2576: the person who ask question can someone as brainliest
shashank2576: there is a button near my answer in which brainliest is written tap onit
Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Given-} \\

 \sf{ {64}^{ -  \frac{1}{3} }  \bigg [ {64}^{ \frac{1}{3} } -  {64}^{ \frac{2}{3} } \bigg  ] } \\

 \bf \underline{To \: find-} \\

\textsf{Simplify the given fractional expression and find their value.}\\

 \bf \underline{Solution-} \\

\textsf{Given fractional expression,}\\

 \sf{ {64}^{ -  \frac{1}{3} }  \bigg [ {64}^{ \frac{1}{3} } -  {64}^{ \frac{2}{3} } \bigg  ] } \\

 \sf{ \Rightarrow \:( {4}^{3}  {)}^{ -  \frac{1}{3} }  \bigg[( {4}^{3}  {)}^{ \frac{1}{3} } - ( {4}^{3}  {)}^{ \frac{2}{3} }   \bigg]  } \\

 \sf{ \Rightarrow \:  {4}^{ \cancel3 \times  \big(  - \frac{1}{ \cancel3} \big) }  \bigg( {4}^{ \cancel3 \times  \frac{1}{ \cancel3} }  -  {4}^{ \cancel3 \times  \frac{2}{ \cancel3} } \bigg) } \\

 \sf{ \Rightarrow \: {4}^{ - 1}  (4 -  {4}^{2}) } \\

 \sf{ \Rightarrow \: \frac{1}{4}  (4 -  {4}^{2} )} \\

 \sf{ \Rightarrow \: \frac{1}{4} (4 - 16) } \\

 \sf{ \Rightarrow \:  \frac{1}{ \cancel4}  \times ( -  \cancel{ {12}}^{3} )} \\

  \sf{ \Rightarrow \:  - 3} \\

 \bf \underline{Answer-} \\

 \bf{ \underline{Hence \:  after  \: simplifying  \: we \:  get  \: the  \: value  \: of : }}

  \sf \underline{\boxed{ \sf{ {64}^{ -  \frac{1}{3} }  \bigg [ {64}^{ \frac{1}{3} } -  {64}^{ \frac{2}{3} } \bigg  ] }  \: is \: -3 } }\\

Similar questions