Math, asked by Myin3145, 1 year ago

Simplify: 64-⅓ (64⅓ - 64⅔)

Answers

Answered by aquialaska
41

Answer:

64^{\frac{-1}{3}}(64^{\frac{1}{3}}-64^{\frac{2}{3}})\:\:is\:\:-3

Step-by-step explanation:

we have to simplify the following,

64^{\frac{-1}{3}}(64^{\frac{1}{3}}-64^{\frac{2}{3}})

we use the following law of exponent,

(x^a)^b=x^{a\times b}\:\:and\:\:x^a\times x^b=x^{a+b}

in exponent form we write 64 = 2^6

\implies(2^6)^{\frac{-1}{3}}((2^6)^{\frac{1}{3}}-(2^6)^{\frac{2}{3}})

\implies2^{6\times\frac{-1}{3}}(2^{6\times\frac{1}{3}}-2^{6\times\frac{2}{3}})

\implies2^{-2}(2^{2}-2^{4})

\implies2^{-2}\times2^2(1-2^2)

\implies2^{-2+2}(1-4)

\implies-3

Therefore, 64^{\frac{-1}{3}}(64^{\frac{1}{3}}-64^{\frac{2}{3}})\:\:is\:\:-3

Answered by Anonymous
8

643−1(6431−6432)is−3

Step-by-step explanation:

we have to simplify the following,

64^{\frac{-1}{3}}(64^{\frac{1}

{3}}-64^{\frac{2}{3}})643−1(6431−6432)

we use the following law of exponent,

(x^a)^b=x^{a\times b}\:\:and\:\:x^a\times x^b=x^{a+b}(xa)b=xa×bandxa×xb=xa+b

in exponent form we write 64 = 2^626

\implies(2^6)^{\frac{-1}{3}}((2^6)^{\frac{1}{3}}-(2^6)^{\frac{2}{3}})⟹(26)3−1((26)31−(26)32)

\implies2^{6\times\frac{-1}{3}}(2^{6\times\frac{1}{3}}-2^{6\times\frac{2}{3}})⟹26×3−1(26×31−26×32)</p><p>\implies2^{-2}(2^{2}-2^{4})⟹2−2(22−24)</p><p>\implies2^{-2}\times2^2(1-2^2)⟹2−2×22(1−22)</p><p>\implies2^{-2+2}(1-4)⟹2−2+2(1−4)</p><p>\implies-3⟹−3</p><p>Therefore, [tex]64^{\frac{-1}{3}}(64^{\frac{1}{3}}-64^{\frac{2}{3}})\:\:is\:\:-3643−1(6431−6432)is−3

Similar questions