Math, asked by mandeisepha1174, 1 year ago

simplify:7+.3root5/3+root5 - 7-3root5/3-root5

Answers

Answered by Deepsbhargav
30
root5 is the correct answer...
Attachments:
Answered by mysticd
28

 Given \:\frac{(7+3\sqrt{5})}{3+\sqrt{5}} - \frac{(7-3\sqrt{5})}{3-\sqrt{5}}

 = \:\frac{(7+3\sqrt{5})(3-\sqrt{5}) - (7-3\sqrt{5})(3+\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})}

 = \frac{21-7\sqrt{5}+9\sqrt{5} - 15 - (21+7\sqrt{5}-9\sqrt{5} - 15)}{3^{2} - (\sqrt{5})^{2}}

 = \frac{21+2\sqrt{5} - 15 - (21-2\sqrt{5} - 15)}{9 - 5}

 = \frac{21+2\sqrt{5} - 15 - 21+2\sqrt{5} + 15}{4}

 = \frac{2\sqrt{5} +2\sqrt{5}}{4}

 = \frac{4\sqrt{5}}{4}

 = \sqrt{5}

Therefore.,

 \red {\frac{(7+3\sqrt{5})}{3+\sqrt{5}} - \frac{(7-3\sqrt{5})}{3-\sqrt{5}}}\green{ =  \sqrt{5} }

•••♪

Similar questions