Math, asked by poojakumaresh26, 1 year ago

simplify .............

Attachments:

Answers

Answered by samikshas269
5
hey buddy here's ur answer
Attachments:

samikshas269: m good and u
samikshas269: hii
Answered by TPS
3

 \sin( \beta ) \bigg[ \frac{ \cos( \beta )  +  \sin( \beta ) }{ \cos( \beta ) }  \bigg] +   \cos( \beta ) \bigg[ \frac{  \sin( \beta )  +   \cos ( \beta ) }{  \sin( \beta ) }  \bigg]  \\  \\  =  \sin( \beta ) \bigg[ \frac{ \sin( \beta )  +   \cos ( \beta )}{ \cos( \beta ) }  \bigg] +   \cos( \beta ) \bigg[ \frac{  \sin( \beta )  +   \cos ( \beta ) }{  \sin( \beta ) }  \bigg]  \\  \\ =  \frac{\sin( \beta )[\sin( \beta )  +   \cos ( \beta )]}{ \cos( \beta ) }   + \frac{  \cos( \beta )[ \sin( \beta )  +   \cos ( \beta )] }{  \sin( \beta ) }   \\  \\  \text{Take $\big(\sin( \beta )  +   \cos ( \beta ) \big)$ common}\\ \\ =\big(\sin( \beta )  +   \cos ( \beta ) \big) \bigg( \frac{ \sin( \beta ) }{ \cos( \beta ) }  +  \frac{ \cos( \beta ) }{ \sin( \beta ) }  \bigg)


 = \big(\sin ( \beta )  +   \cos ( \beta ) \big) \bigg( \frac{ \sin ^{2} ( \beta ) +  \cos ^{2} ( \beta )  }{ \sin( \beta )  \cos( \beta ) }    \bigg) \\  \\  =\big(\sin ( \beta )  +   \cos ( \beta ) \big) \bigg( \frac{1  }{ \sin( \beta )  \cos( \beta ) }    \bigg) \\  \\  = \frac{\sin ( \beta )  +   \cos ( \beta )}{ \sin( \beta ) \cos( \beta )  }  \\  \\  =  \frac{ \sin( \beta ) }{ \sin( \beta )  \cos( \beta ) }  +  \frac{ \cos( \beta ) }{ \sin( \beta ) \cos( \beta )  }  \\  \\  =  \frac{1}{ \cos( \beta ) }  +  \frac{1}{ \sin( \beta ) }  \\  \\  =  \sec( \beta )  +  \cosec( \beta )
Similar questions