Math, asked by bhadsonsaini2385, 11 months ago

Simplify (7a /2-5b/2)^2-(5a/2-7b/2)^2 and find the value for a =1 and b=-2)

Answers

Answered by mysticd
5

Answer:

 \left( \frac{7a}{2} - \frac{5b}{2}\right)^{2} - \left( \frac{5a}{2} - \frac{7b}{2}\right)^{2}

 =[ \left( \frac{7a}{2} - \frac{5b}{2}\right)+\left( \frac{5a}{2} - \frac{7b}{2}\right)][ \left( \frac{7a}{2} - \frac{5b}{2}\right)-\left( \frac{5a}{2} - \frac{7b}{2}\right)]

 \boxed { \pink { a^{2} - b^{2} = (a+b)(a-b) }}

 = \left( \frac{7a}{2} - \frac{5b}{2}+\frac{5a}{2} - \frac{7b}{2}\right)\left( \frac{7a}{2} - \frac{5b}{2}-\frac{5a}{2} + \frac{7b}{2}\right)

 = \left( \frac{7a}{2} + \frac{5a}{2} - \frac{5b}{2} - \frac{7b}{2} \right) \left( \frac{7a}{2} - \frac{5a}{2} - \frac{5b}{2} +\frac{7b}{2} \right)

 = \left( \frac{7a+5a}{2} - \frac{5b+7b}{2} \right) \left( \frac{7a-5a}{2} + \frac{-5b+7b}{2}\right)

 = \left( \frac{ 12a}{2} - \frac{12b}{2}\right) \left( \frac{2a}{2} + \frac{2b}{2} \right)

 = ( 6a-6b)(a+b)

 = 6(a-b)(a+b)

 = 6(a^{2} - b^{2})

 Now, \: If \: a = 1 \:and \: b = -2 \: then \\Value \: of \: \left( \frac{7a}{2} - \frac{5b}{2}\right)^{2} - \left( \frac{5a}{2} - \frac{7b}{2}\right)^{2}\\= 6(a^{2} - b^{2}) \\= 6[ 1^{2} - (-2)^{2} ] \\= 6( 1- 4) \\= 6 (-3) = -18

•••♪

Similar questions