Math, asked by yash403160, 1 year ago

simplify
(a²-b²)³+(b²-c²)³+(c²-a²)³/(a-b)³+(b-c)³+(c-a)³​

Answers

Answered by emailidpk0
7

Step-by-step explanation:

mark me as brainliest...

plzzzzzz

.

Attachments:
Answered by Anonymous
15

AnswEr:

We have,

 \tt \: ( {a}^{2}  -  {b}^{2} ) + ( {b}^{2} -  {c}^{2}  ) + ( {c}^{2}  -  {a}^{2} ) = 0 \\  \\  \therefore \:  \tt \: ( {a}^{2}  -  {b}^{2} ) {}^{3}  + ( {b}^{2}  -  {c}^{2} ) {}^{3}  +(  {c}^{2}  -  {a}^{2} ) {}^{3}  \\ \tt = 3( {a}^{2}  -  {b}^{2} )( {b}^{2}  -  {c}^{2} )( {c}^{2}  -  {a}^{2} ) \\  \\  \implies \tt \: ( {a}^{2}  -  {b}^{2} ) {}^{3}  + ( {b}^{2}  -  {c}^{2} ) {}^{3}  +(  {c}^{2}  -  {a}^{2} ) {}^{3}  \\   \tt \: = 3(a - b)(a  + b)(b - c)(b + c) \\  \tt \: (c - a)(c +a)

___________________________________

Similarly, we have,

 \tt \: (a - b) + (b - c) + (c - a) = 0 \\  \\  \implies \tt \: (a - b) {}^{3}  + (b - c) {}^{3}  + (c - a) {}^{3}  \\  \tt \:  = 3(a - b)(b + c)(c - a) \\  \\  \therefore \tt \frac{( {a}^{2}  -  {b}^{2}) {}^{3}  + ( {b}^{2}  -  {c}^{2}) {}^{3}( {c}^{2}  -  {a}^{2}) {}^{3} }{(a - b) {}^{3}  + (b - c) {}^{3}  + (c - a) {}^{3} }  \\  \\  =  \tt \:  \frac{3(a - b)(a + b)(b - c)(b + c)(c  - a)(c + a)}{3(a - b)(b - c)(c - a)}  \\  =  \tt \: (a + b)(b + c)(c + a)

Similar questions