Simplify: (a²+ b²+ c²)(a³) + (a³–b³–c³) (b³)
Verify your result in the above problem for a =1, b =1, c= 2
Answers
Given
a = 1
b = 1
c = 2
___________________________________________
To Find
The value of expression with the values of variables.
___________________________________________
Solution
First of all we have two methods to solve this.
Method 1
Simplify the expression and then substitute the values of the variables, 'a', 'b' and 'c'.
Step 1: Distribute the variables.
⇒ (a²+ b²+ c²)(a³) + (a³-b³-c³) (b³)
⇒ (a³)(a²) + (a³)(b²) + (a³)(c²) + (b³)(a³) + (b³)(-b³) + (b³)(-c³)
⇒ a³⁺² + a³b² + a³c² + a³b³ - b³⁺³ - b³c³
⇒ a⁵ + a³b² + a³c² + a³b³ - b⁶ - b³c³
Step 2: Give the value of the variables and solve.
⇒ (a²+ b²+ c²)(a³) + (a³-b³-c³) (b³)
⇒ 1⁵ + 1³×1² + 1³×2² + 1³×1³ - 1⁶ - 1³×2³
⇒ 1 + 1 + 4 + 1 - 1 - 8
⇒ 7 - 1 - 8
⇒ 6 - 8
⇒ -2
___________________________________________
Method 2
We'll just give value of 'a' 'b' and 'c' and solve.
Step 1: Give the value to the variables.
⇒ (a²+ b²+ c²)(a³) + (a³-b³-c³) (b³)
⇒ (1²+ 1²+ 2²)(1³) + (1³-1³-2³) (1³)
⇒ (1 + 1 + 4)(1) + (1 - 1 - 8)(1)
⇒ (2 + 4)(1) + -8(1)
⇒ 6(1) + -8(1)
⇒ 6 + - 8
⇒ 6 - 8
⇒ -2
∴ With the given values of the variables in the equation we get the answer as (-2)
___________________________________________