Math, asked by shahiranavas69, 3 months ago

simplify and express each of the following in exponential form
 \frac{2 {}^{8}  \times a {}^{5} }{4 {}^{3}  \times a {}^{3} }
 \frac{3 \times 7  {}^{2} \times 11 {}^{8} }{21 \times 11 {}^{3} }

Answers

Answered by sharanyalanka7
7

Answer:

To Simplify :-

\frac{2^{8}\times a^{5}}{4^{3}\times a^{3}}

\frac{3\times 7^{2}\times 11^{8}}{21\times 11^{3}}

Solution:-

1) \sf \frac{2^{8}\times a^{5}}{4^{3}\times a^{3}}

We know that,

\sf 4^{3} can\: also\: be\: written\:as\: (2^{2})^{3}

= \sf (2)^{2\times3}

= \sf 2^{6}

1) \sf \frac{2^{8}\times a^{5}}{4^{3}\times a^{3}}

= \sf \dfrac{2^{8}\times a^{5}}{2^{6}\times a^{3}}

= \sf 2^{8 - 6}\times a^{5 - 3}

[Since , \sf\dfrac{b^{m}}{b^{n}} = b^{m - n}]

= \sf 2^{2}\times a^{2}

= \sf 4\times a^{2}

= \sf 4a^{2}

\sf\therefore\frac{2^{8}\times a^{5}}{4^{3}\times a^{3}} = 4a^{2}

2) \frac{3\times 7^{2}\times 11^{8}}{21\times 11^{3}}

= \sf\dfrac{3\times 7^{2}\times 11^{8}}{3\times 7\times 11^{3}}

[Since, 21 = 3\sf\times 7]

= \sf\dfrac{\not{3}\times 7^{2}\times 11^{8}}{\not{3}\times 7\times 11^{3}}

= \sf 7^{2 - 1}\times 11^{8 - 3}

[Since , \sf\dfrac{b^{m}}{b^{n}} = b^{m - n}]

= \sf 7^{1}\times 11^{5}

= \sf 7\times 161051

= 1127357

\sf\therefore\frac{3\times 7^{2}\times 11^{8}}{21\times 11^{3}} = 1127357

Similar questions