Math, asked by itzsehaj, 6 hours ago

Simplify and express the result in power notation with positive exponent:
(i) (-4)4 ÷(-4)8
(ii) (1/23)2
(iii) -(3)4×(5/3)4
(iv) (3-7÷3-10)×3-5
(v) 2-3×(-7)-3

No spam
Need verified answer with proper explanation

Answers

Answered by YourHelperAdi
7

Hey Mate ! here are your solution!

1] (-4)⁴÷(-4)⁸

Remember the law which states that :

 \tt{ {x}^{a}  \div  {x}^{b}  =  {x}^{a - b} }

Hence, (-4)⁴÷(-4)⁸

 \tt{ =  { - 4}^{4 - 8} }

 \tt{ =  { - 4}^{ - 4} }

 \tt{ =  \frac{1}{ { - 4}^{4} } }

Hence, This I your solution

_____________________

2] (1/2³)² (I think you have written this ?)

According to a law which state :

 \tt{( {x}^{a}  {)}^{b}  =  {x}^{a \times b} }

Hence, (1/2³)²

   \large\tt{ =  (\frac{1}{ {2}^{3}  } {)}^{2} }

 \large \tt{ =  \frac{ {1}^{2} }{ {2}^{2 \times 3} } }

  \large\tt{  = \frac{1}{ {2}^{6} } }

Hence, This is your solution.

_____________________

3] (-3)⁴×(5/3)⁴

According to a law,

 \tt{ {x}^{a}  \times  {y}^{a} =  {(x \times y})^{a} }

Hence, (-3)⁴×(5/3)⁴

 \large \tt{ =  {( - 3 \times  \frac{5}{3}) }^{4} }

 \large \tt{ =   {( - 5)}^{4} }

Hence, This is your solution

_____________________

4]

 \tt{ ( {3}^{ - 7}  \div  {3}^{ - 10} ) \times  {3}^{ - 5}}

 \tt{ = ( {3}^{ - 7  +  10} ) \times  {3}^{ - 5} }

 \tt{ =  {3}^{ - 3}  \times  {3}^{ - 5} }

 \tt{ =  {3}^{ 3 - 5} }

 \tt{ =  {3}^{ - 2} }

 \large \tt{ =  \frac{1}{ {3}^{2} } }

Hence, This is your solution

_____________________

5]

 \tt{ {2}^{ - 3}  \times  { - 7}^{ - 3} }

 \tt{ =  {( - 7 \times 2)}^{ - 3} }

 \tt{ =  {( - 14)}^{ - 3} }

 \large \tt{ =  \frac{1}{ - 1 {4}^{3} }}

Hence your solution are :

 \large \tt{1.  \frac{1}{ { - 4}^{4} } }

 \large \tt{2. \frac{1}{ {2}^{6} } }

 \large \tt{3.  {( - 5)}^{4} }

 \large \tt{4. \frac{1}{ {3}^{2} } }

 \large \tt{5. \frac{1}{ { - 14}^{3} }}

Similar questions