Math, asked by gokarlanandini, 9 months ago

simplify and give reasons.(4/7)^-5×(7/4)^-7.

Answers

Answered by itzshrutiBasrani
5

Question:

( \frac{4}{7} ) {}^{ - 5}   \times ( \frac{7}{4} ) {}^{ - 7}

Solution:

( \frac{4}{7} ) {}^{ - 5}   \times ( \frac{7}{4} ) {}^{ - 7}

Property to be used :

a {}^{  - x}  = ( \frac{1}{a} ) {}^{x}

So,

( \frac{4}{7} ) {}^{ - 5}  \times ( \frac{7}{4}   \: ^{7} )

Property :

a {}^{x}  \times a {}^{y}  = a {}^{x + y}

So,

using the property

( \frac{4}{7} ) {}^{ - 5 + 7}

 = ( \frac{4}{7} ) {}^{2}

Hence,

( \frac{4}{7} ) {}^{ - 5}   \times ( \frac{7}{4} ) {}^{ - 7}

 = ( \frac{4}{7} ) {}^{2}

_________________

Extra :

Two basic properties used to solved this question

1) \:  \: a {}^{  - x}  = ( \frac{1}{a} ) {}^{x}

2) \: a {}^{x}  \times a {}^{y}  = a {}^{x + y}

Answered by spacelover123
8

Question

\sf  (\frac{4}{7})^{-5}\times (\frac{7}{4})^{-7}

\rule{300}{0.5}

Answer

\sf  (\frac{4}{7})^{-5}\times (\frac{7}{4})^{-7}

Step 1: Apply this law of exponent ⇒ \sf a^{-m}=\frac{1}{a^{m}}

\sf  (\frac{4}{7})^{-5}\times (\frac{7}{4})^{-7}

\sf  (\frac{4}{7})^{-5}\times (\frac{4}{7})^{7}

Step 2: Apply this law of exponent ⇒ \sf a^{m} \times a^{n} = a^{m+n}

\sf  (\frac{4}{7})^{-5}\times (\frac{4}{7})^{7}

\sf  (\frac{4}{7})^{-5+7}

\sf  (\frac{4}{7})^{2}

Step 3: Find the actual value.

\sf  (\frac{4}{7})^{2}

\sf \frac{4\times 4 }{7\times 7 }

\sf  \frac{16}{49}

\bf \therefore \  (\frac{4}{7})^{-5}\times (\frac{7}{4})^{-7} =   \frac{16}{49}

\rule{300}{0.5}

Additional Information

What are exponents?

Something that shows repeated multiplication is known as an exponent. Another name for exponents is powers.

For Example ⇒ \sf 3^2 = 3 \times 3

What are the parts of an exponential number?

An exponential number consists of two parts. The base and the exponent part.

It is like this ⇒ \sf Base^{Exponent}

\rule{300}{0.5}

Similar questions