Math, asked by Poonamsinghmdil, 3 months ago

Simplify answer it's urgent please please I will surely follow you​

Attachments:

Answers

Answered by MasterDhruva
4

➤ Answer :-

{\tt \longrightarrow \dfrac{ {3}^{5} \times {10}^{5} \times 25  }{{5}^{7} \times {6}^{5}}}

First, we should write all the digits in exponential form......

{\tt \longrightarrow \dfrac{{3}^{5} \times {10}^{5} \times {5}^{2}}{{5}^{7} \times {6}^{5}}}

{\tt \longrightarrow \dfrac{ {3}^{5}  \times (5 \times 2)^{5} \times  {5}^{2}}{ {5}^{7} \times (3 \times 2)^{5}}}

{\tt \longrightarrow \dfrac{{3}^{5} \times {5}^{5} \times {2}^{5} \times {5}^{2}}{{5}^{7} \times  {3}^{5} \times {2}^{5}}}

{\tt \longrightarrow \dfrac{ {3}^{5} \times {5}^{5 + 2} \times {2}^{5}}{{5}^{7} \times {3}^{5} \times {2}^{5}}}

{\tt \longrightarrow \dfrac{{3}^{5} \times {5}^{7} \times {2}^{5}}{{5}^{7} \times {3}^{5} \times {2}^{5}}}

Now, simplify each of them by looking into the bases......

{\tt \longrightarrow ({3}^{5 - 5})\times ({5}^{7 - 7}) \times ({2}^{5 - 5})}

{\tt \longrightarrow {3}^{0} \times {5}^{0} \times {2}^{0}}

Here, note that any base having a power of 0, tge value will be one.

So,

{\tt \longrightarrow 1 \times 1 \times 1 = \boxed{\tt 1}}

\Huge\thereforeThe answer is One (1).

━━━━━━━━━━━━━━━━━━━━━━

More to know...........

  • While solving the problems of exponents and powers, if the given numbers are composite numbers, we should represent in their prime factors. We can also do cancellation, when the base are same.

Laws of exponents :-

{\sf \dashrightarrow {a}^{m} \times {a}^{n} = {a}^{m + n}}

{\sf \dashrightarrow {a}^{m} \div {a}^{n} = {a}^{m-n}}

{\sf \dashrightarrow ({a}^{m})^{n} = {a}^{m \times n}}

{\sf \dashrightarrow {a}^{0} = 1}

Similar questions