Math, asked by ashokkumar550h, 2 months ago

simplify by combining similar terms:
 \sqrt[3]{625 }  +   \sqrt[3]{40}  +  \sqrt[3]{135}

Attachments:

Answers

Answered by utsavsinghal
2

Answer:

Hey there !!!!!

=2∛40+3∛625-4∛320-----Equation 1

We can write

40=2*2*2*5=2³*5

∛40=∛(2³*5)= ∛2³*∛5=2∛5

625=25²=(5²)²

∛625=∛5⁴=5∛5

320=40*8=40*2³=4*2³*10=2²*2³*2*5=2⁶*5

∛320=∛2⁶*5=(2⁶)¹/₃*∛5=2²*∛5=4*∛5

So, ∛40 =2*∛5 ,∛625=5∛5 ,∛320=4∛5

Now substituting values of ∛40,∛625 and ∛320 in equation 1

2∛40+3∛625-4∛320 = 2*2∛5+3*5*∛5-4*4∛5

=4∛5+15∛5-16∛5

=∛5(19-16) = 3∛5

Hope this helped you !!!

Step-by-step explanation:

Answered by sriram77
2

Answer:

 \sqrt[3]{625}  =  \sqrt[3]{125 \times 5}   \\ 5 \sqrt[3]{5} \\   \sqrt[3]{40}  =  \sqrt[3]{8 \times 5}  \\ 2  \sqrt[3]{5}  \\  \sqrt[3]{135}  =  \sqrt[3]{27 \times 5}  \\ 3 \sqrt[3]{5}

Step-by-step explanation:

Therefore the answer is

5 \sqrt[3]{5}  + 2 \sqrt[3]{5}  + 3 \sqrt[3]{5}  = 10 \sqrt[3]{5}

Similar questions