Math, asked by chandnisurywanshi48, 5 months ago

Simplify by Ration ansing the
denominator
5+3 ✓2
_______
5-3 ✓2​

Answers

Answered by oOfRiEnDsHiPoO
0

Answer:

 \frac{5 + 3 \sqrt{2} }{5 - 3 \sqrt{2} }  \\  \\  =  \frac{5 + 3 \sqrt{2} }{5 - 3 \sqrt{2} }  \times  \frac{5 + 3 \sqrt{2} }{5 + 3 \sqrt{2} }  \\  \\  =  \frac{(5 + 3 \sqrt{2}) ^{2}  }{ {5}^{2}  - (3 \sqrt{2}) ^{2}  }  \\  \\  =  \frac{ {5}^{2}  + 2 \times 5 \times 3 \sqrt{2} +  ({3 \sqrt{2} )}^{2}  }{25 - 9 \times 2}  \\  \\  =  \frac{25 + 30 \sqrt{2} + 9 \times 2 }{25 - 18}  \\  \\  =  \frac{25 + 30 \sqrt{2}  + 18}{25 - 18}  \\  \\  =  \frac{43 + 30 \sqrt{2} }{7}

# keep smiling ☺

Answered by Anonymous
0

 \frac{5 + 3 \sqrt{2} }{5 - 3 \sqrt{2} }  \times  \frac{5 + 3 \sqrt{2} }{5 + 3 \sqrt{2} }  \\  =  \frac{ {(5 + 3 \sqrt{2} )}^{2} }{ {(5)}^{2} -  {(3 \sqrt{2}) }^{2}  }  \\  =  \frac{ {(5)}^{2} +  {(3 \sqrt{2}  ) }^{2}  + 2(5)(3 \sqrt{2}  )}{25 - (9)(2)}  \\  =  \frac{25 + 18 + 30 \sqrt{2} }{25 - 18}  \\  =  \frac{43 + 30 \sqrt{2} }{7}

Since the question is about rationalising the denominator

It is completed

Bcoz in the denominator the no. is 7

and 7 is a rational no.

Similar questions