Math, asked by kartikey3049, 1 year ago

simplify by rationalising the denominator:7√3-5√2/√48+√18

Answers

Answered by mannvora74pddroc
17
here's the solution. hope it helps.
Attachments:
Answered by Anonymous
8
hiii!!!

here's ur answer...

given \:  =  >  \frac{7 \sqrt{3} - 5 \sqrt{2}  }{ \sqrt{48} -  \sqrt{18}  } \\  \\ we \: can \: write \:  \sqrt{48}   = 4 \sqrt{3} and \\  \sqrt{18}  = 3 \sqrt{2}  \\  \\  =  \frac{7 \sqrt{3}  - 5 \sqrt{2} }{4 \sqrt{3}  -  3\sqrt{2} }  \times  \frac{4 \sqrt{3}  + 3 \sqrt{2}  }{4 \sqrt{3}   +  3 \sqrt{2} }  \\  \\  =  \frac{(7 \sqrt{3}  - 5 \sqrt{2})(4 \sqrt{3}   + 3 \sqrt{2} ) }{(4 \sqrt{3} - 3 \sqrt{2})( 4 \sqrt{3}  + 3 \sqrt{2} ) }  \\  \\  =  \frac{7 \sqrt{3} (4 \sqrt{3}  + 3 \sqrt{2} ) - 5 \sqrt{2} (4 \sqrt{3}  + 3 \sqrt{2}) }{( {4 \sqrt{3}) }^{2}  - ( {3 \sqrt{2} )}^{2} }  \\  \\  =  \frac{28(3) + 21 \sqrt{6}  - 20 \sqrt{6} - 15(2) }{48 - 18}  \\  \\  =  \frac{84 +  \sqrt{6}  - 30}{30}  \\  \\  =  \frac{54 +  \sqrt{6} }{30}

hope this helps..!!
Similar questions