Math, asked by sreeteja123456789, 1 year ago

simplify by rationalizing the denominator:√7-√5/√7+√5

Answers

Answered by dhillonR
161
here is answer for your question
Attachments:

dhillonR: mark as brainliest
Answered by pulakmath007
6

\displaystyle \sf{  \frac{ \sqrt{7}  -  \sqrt{5} }{ \sqrt{7}  +  \sqrt{5} }  } = 6 -  \sqrt{35}

Given :

\displaystyle \sf{  \frac{ \sqrt{7}  -  \sqrt{5} }{ \sqrt{7}  +  \sqrt{5} }  }

To find :

To rationalize the denominator

Solution :

Step 1 of 2 :

Write down the given expression

Here the given expression is

\displaystyle \sf{  \frac{ \sqrt{7}  -  \sqrt{5} }{ \sqrt{7}  +  \sqrt{5} }  }

Step 2 of 2 :

Rationalize the denominator

\displaystyle \sf{  \frac{ \sqrt{7}  -  \sqrt{5} }{ \sqrt{7}  +  \sqrt{5} }  }

Multiplying both of the numerator and denominator by √7 - √5 we get

\displaystyle \sf{  \frac{ \sqrt{7}  -  \sqrt{5} }{ \sqrt{7}  +  \sqrt{5} }  }

\displaystyle \sf{ =   \frac{( \sqrt{7}  -  \sqrt{5})( \sqrt{7}  -  \sqrt{5} )}{ (\sqrt{7}  +  \sqrt{5})(\sqrt{7}  -  \sqrt{5} ) }  }

\displaystyle \sf{ =   \frac{{( \sqrt{7}  -  \sqrt{5}) }^{2} }{ {(\sqrt{7} )}^{2}   - {(  \sqrt{5} )}^{2} }  }

\displaystyle \sf{ =  \frac{ {(\sqrt{7} )}^{2}  - 2 \times  \sqrt{7}  \times  \sqrt{5}  + {(  \sqrt{5} )}^{2} }{ 7 - 5}  }

\displaystyle \sf{ =  \frac{ 7 - 2 \sqrt{35}  + 5 }{ 2}  }

\displaystyle \sf{ =  \frac{ 12 - 2 \sqrt{35} }{ 2}  }

\displaystyle \sf{ =  \frac{ 2(6 -  \sqrt{35} ) }{ 2}  }

\displaystyle \sf{ = 6 -  \sqrt{35}  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. the value of (√5+√2)²

https://brainly.in/question/3299659

2. Simplify ( 8+√5)(8-√5).

https://brainly.in/question/17061574

#SPJ3

Similar questions