Math, asked by mrdewkate3704, 4 months ago

Simplify by rationalizing the denominator . Root5-2/root5+2 -root5+2/root5-2

Answers

Answered by Flaunt
433

\sf\huge\bold{\underline{\underline{{Solution}}}}

\sf \longmapsto \dfrac{ \sqrt{5}  - 2}{ \sqrt{5}  + 2}  -  \dfrac{ \sqrt{5} + 2 }{ \sqrt{5}  - 2}

Rationalising means replacing root from denominator to the numerator to make the term more simplified.

=>In rationalising we multiply with opposite sign of denominate to both numerator and denominator.

\sf \longmapsto \dfrac{ \sqrt{5}  - 2}{ \sqrt{5} + 2 }  \times  \dfrac{ \sqrt{5} - 2 }{ \sqrt{5}  - 2}  -  \dfrac{ \sqrt{5}  + 2}{ \sqrt{5}  - 2}  \times  \dfrac{ \sqrt{5}  + 2}{ \sqrt{5} + 2 }

Identity apply here :

\sf \bold{(x + y)(x - y) =  {x}^{2}  -  {y}^{2} }

\sf \bold{ {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy}

\sf \bold{ {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy}

\sf \longmapsto \dfrac{ {( \sqrt{5}  - 2)}^{2} }{ {( \sqrt{5} )}^{2} -  {(2)}^{2}  } -  \dfrac{ {( \sqrt{5}  + 2)}^{2} }{ {( \sqrt{5} )}^{2}  -  {(2)}^{2} }

\sf \longmapsto \dfrac{ {( \sqrt{5}) }^{2}  +  {(2)}^{2} - 2( \sqrt{5} )(2) }{5 - 4}  -  \dfrac{ {( \sqrt{5} )}^{2}  +  {(2)}^{2}  + 2( \sqrt{5})(2) }{5 - 4}

\sf \longmapsto5 + 4 - 4 \sqrt{5} - (5 + 4 + 4 \sqrt{5}  )

\sf \longmapsto9 - 4 \sqrt{5}   - 9 - 4 \sqrt{5}

\sf \longmapsto{\cancel{9}} - 4 \sqrt{5}   - {\cancel{9}} -4 \sqrt{5} )

=>-8√5

Answered by Anonymous
0

Answer:

A Love story is my dreams Love story but even we are present to destriat and BOOM!!!

We can turn on ❤️ and we can turn off . This is my dreams Love story in my life and Heart ⚔️⚔️ IN THE DARK HOUR WHEN HAIL OF DEMON COMES CALL ON ME BROTHER AND WE WILL FIGHT THEM TOGETHER ⚔️⚔️

Step-by-step explanation:

pls mark me brainliest and 500 thanks again

Similar questions