Math, asked by dularranu, 5 months ago

Simplify: (cosec A – sin A)(sec A – cos A)(tan A + cot A)​


dularranu: cosA is answer or not

Answers

Answered by tennetiraj86
3

Answer:

answer for the given problem is 1

Using formulae:-

  • Cosec A=1/Sin A
  • Sec A=1/Cos A
  • Tan A=Sin A/Cos A
  • Cot A=Cos A/Sin A
  • Sin² A+Cos² A=1
Attachments:

dularranu: f a cos A + b sin A= 4 and a sin A− b cos A= 3, then evaluate a^2 + b^2
.
tennetiraj86: Given equations are :acosA+bSinA=4 on squaring both sides then
tennetiraj86: (acosA+bSinA)²=4² =>a²Cos2A+2abSinAcosA+b²Sin²A----(1)
tennetiraj86: and a SinA-bCos A=3 ,on squaring both sides then
tennetiraj86: (aSinA-bCosA)²=3², a²Sin²A-2absinAcosA+b²Cos²A---(2)
tennetiraj86: adding(1)&(2) then,we get,a²Sin²A+a²Cos²A+b²sin²A+b²Cos²A=16+9,
tennetiraj86: a²(sin²A+Cos²A)+b²(Sin²A+cos²A)=25
tennetiraj86: a²(1)+b²(1)=25
tennetiraj86: a²+b²=25
dularranu: thanks bro
Answered by sandy1816
1

(coseca - sina)(seca - cosa)(tana + cota) \\  \\  = ( \frac{1}{sina}  - sina)( \frac{1}{cosa}  - cosa)( \frac{sina}{cosa}  +  \frac{cosa}{sina} ) \\  \\  = ( \frac{1 -  {sin}^{2}a }{sina} )( \frac{1 -  {cos}^{2}a }{cosa} )( \frac{ {sin}^{2}a +  {cos}^{2}  a}{sinacosa} ) \\  \\  =  \frac{ {sin}^{2} a {cos}^{2}a }{ {sin}^{2} a {cos}^{2} a}  \\  \\  = 1

Similar questions