Math, asked by aditi07, 1 year ago

simplify (cosec theta)(1+cos theta)(cosec theta -cot theta ) = 1

Answers

Answered by abhish010120
5
we know cosecA = 1/Sins
cot A= cosA/sinA
by this we solve it LHS
Attachments:
Answered by SujalSirimilla
5

Answer:

\to \sf{\red{cosec \theta (1+cos \theta)(cosec \theta - cot \theta)}}

\bullet \sf \ cosec \theta=\dfrac{1}{sin \theta} ; \ cot \theta = \dfrac{cos \theta}{sin \theta}

\big \therefore  \sf \dfrac{1}{sin \theta}  (1+cos \theta)(\dfrac{1}{sin \theta}  -  \dfrac{cos \theta}{sin \theta} )

\to  \sf \dfrac{ (1+cos \theta)}{sin \theta} \left(\dfrac{1-cos \theta}{sin \theta}   \right)

\to  \sf \dfrac{ (1+cos \theta)(1-cos \theta)}{sin^2 \theta}

\to \sf \dfrac{(1-cos^2 \theta)}{sin^2 \theta}

\sf \bullet W.K.T: \ 1-cos^2 \theta = sin^2\theta

\to \sf \dfrac{(sin^2 \theta)}{sin^2 \theta}

\leadsto \sf{\red{1}}

LHS=RHS.

HENCE PROVED.

Fundamental trigonometric identities:

\boxed{\substack{\displaystyle \sf sin^2 \theta+cos^2 \theta = 1 \\\\  \displaystyle \sf 1+cot^2 \theta=cosec^2 \theta \\\\ \displaystyle \sf 1+tan^2 \theta=sec^2 \theta}}

Similar questions