Math, asked by vishalgadigoppula456, 7 months ago

simplify giving answer in the exponential form? 1) 5^17÷5^13=​

Answers

Answered by krishapatel8312
2

Find the value of:

(i) 26            (ii) 93              (iii) 112               (iv) 54

Answer:

(i) 26 = 2 * 2 * 2 * 2 * 2 * 2 = 64

(ii) 93 = 9 * 9 * 9 = 729

(iii) 112 = 11 * 11 = 121

(iv) 54 = 5 * 5 * 5 * 5 = 625

 

Question 2:

Express the following in exponential form:

(i) 6 * 6 * 6 * 6 (ii) t * t  (iii) b * b * b * b (iv) 5 * 5 * 7 * 7 * 7 (v) 2 * 2 * a * a

(vi) a * a * a * c * c * c * c  * d

Answer:

(i) 6 * 6 * 6 * 6 = 64

(ii) t * t = t2

(iii) b * b * b * b = b4

(iv) 5 * 5 * 7 * 7 * 7 = 52 * 73

(v) 2 * 2 * a * a = 22 * a2

(vi) a * a * a * c * c * c * c  * d = a3 * c4 * d

 

Question 3:

Express each of the following numbers using exponential notations:

(i) 512          (ii) 343            (iii) 729             (iv) 3125

Answer:

(i) 512 = 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 = 29

                                                                                   

(ii) 343 = 7 * 7 * 7 = 73

                                                                                   

(iii) 729 = 3 * 3 * 3 * 3 * 3 * 3 = 36

                                                                                   

(iv) 3125 = 5 * 5 * 5 * 5 * 5 = 55

                                                                                   

Question 4:

Identify the greater number, wherever possible, in each of the following:

(i) 43 and 34       (ii) 53 or 35    (iii) 28 or 82     (iv) 1002 or 2100       (v) 210 or 102

 Answer:

(i) 43 = 4 * 4 * 4 = 64

    34 = 3 * 3 * 3 * 3 = 81 

Since 64 < 81

So, 34 is greater than 43

(ii) 53 = 5 * 5 * 5 = 125

     35 = 3 * 3 * 3 * 3 * 3 = 243

Since 125 < 243

So, 35 is greater than 53  

(iii) 28 = 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 = 256

       82 = 8 * 8 = 64

Since, 256 > 64

Thus, 28 is greater than 82

(iv) 1002 = 100 * 100 = 10,000

       2100 = 2 * 2 * 2 * 2 * 2 * …..14 times * ……… * 2 = 16,384 * ….. * 2

Since, 10,000 < 16,384 * ……. * 2

Thus, 2100 is greater than 1002.

(v) 210 = 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 = 1,024

      102 = 10 * 10 = 100

Since, 1,024 > 100

Thus, 210 is greater than 102

Question 5:

Express each of the following as product of powers of their prime factors:

(i) 648          (ii) 405           (iii) 540           (iv) 3,600

Answer:

(i) 648 = 23 * 34

                                             

(ii) 405 = 5 * 34           

                                             

(iii) 540 = 22 * 33 * 5         

                                            

(iv) 3,600 = 24 * 32 * 52

                                           

Question 6:

Simplify:

(i) 2 * 103           (ii) 72 * 22             (iii) 23 * 5            (iv) 3 * 44                 (v) 0 * 102

(vi) 52 * 33              (vii) 24 * 32       (viii) 32 * 104

Answer:

(i) 2 * 103 = 2 * 10 * 10 * 10 = 2,000

(ii) 72 * 22 = 7 * 7 * 2 * 2 = 196

(iii) 23 * 5 = 2 * 2 * 2 * 5 = 40

(iv) 3 * 44 = 3 * 4 * 4 * 4 * 4 = 768

(v) 0 * 102 = 0 * 10 * 10 = 0

(vi) 52 * 33 = 5 * 5 * 3 * 3 * 3 = 675

(vii) 24 * 32 = 2 * 2 * 2 * 2 * 3 * 3 = 144

(viii) 32 * 104 = 3 * 3 * 10 * 10 * 10 * 10 = 90,000

Question 7:

Simplify:

(i) (-4)3          (ii) (-3) * (-2)3           (iii) (-3)2 * (-5)2           (iv) (-2)3 * (-10)3

Answer:

(i) (-4)3 = (-4) * (-4) * (-4) = -64         

(ii) (-3) * (-2)3 = (-3) * (-2) * (-2) * (-2) = 24         

(iii) (-3)2 * (-5)2 = (-3) * (-3) * (-5) * (-5) = 225         

(iv) (-2)3 * (-10)3 = (-2) * (-2) *(-2) *(-10) *(-10) *(-10) = 8000

Question 8:

Compare the following numbers:

(i) 2.7 * 1012; 1.5 * 108               (ii) 4 * 1014; 3 * 1017

Answer:

(i) 2.7 * 1012 and 1.5 * 108

On comparing the exponents of base 10,

2.7 * 1012 > 1.5 * 108

(ii) 4 * 1014  and 3 * 1017

On comparing the exponents of base 10,

4 * 1014 < 3 * 1017

                                                               Exercise 13.2

Question 1:

Using laws of exponents, simplify and write the answer in exponential form:

(i) 32 * 34 * 38               (ii) 615/610                (iii) a3 * a2             (iv) 7x * 72          (v) (52)3 /53              

(vi) 25 * 55                   (vii) a4 * b4                (viii) (34)3              (ix) (220/215) * 23        (x) 8t/82

Answer:

(i) 32 * 34 * 38 = 32+4+8 = 314                                                     [Since am * an = am+n ]          

(ii) 615/610 = 615-10 = 65                                                             [Since am / an = am-n ]              

(iii) a3 * a2 = a3+2 = a5                                                               [Since am * an = am+n ]           

(iv) 7x * 7

Answered by harshitha926594
0

Answer:

\color{magenta}\huge\bold\star\underline\mathcal{Solution\: :-}\star \\  \\  \frac{ {5}^{17} }{ {5}^{13} }  \\  =  {5}^{17 - 13}  \\  =  {5}^{4}  \\  = 625 \\  =  \large{ \boxed{ \boxed { \bold{{5}^{2}  \times  {5}^{2}} }}}

Similar questions