simplify ->
cos-1(1-x^2n/1+x^2n)
Answers
Answered by
0
Put xn=tan(θ)xn=tan(θ)
cos−11−x2n1+x2ncos−11−x2n1+x2n
=cos−11−tan2θ1+tan2θ=cos−11−tan2θ1+tan2θ
=cos−1cos2θ−sin2θcos2θ+sin2θ=cos−1cos2θ−sin2θcos2θ+sin2θ
=cos−1(cos 2θ)=cos−1(cos 2θ)
=2θ=2θ
=2tan−1(xn)=2tan−1(xn)
So, derivative will be
2nxn−11+x2n,2nxn−11+x2n,
according to chain rule.
cos−11−x2n1+x2ncos−11−x2n1+x2n
=cos−11−tan2θ1+tan2θ=cos−11−tan2θ1+tan2θ
=cos−1cos2θ−sin2θcos2θ+sin2θ=cos−1cos2θ−sin2θcos2θ+sin2θ
=cos−1(cos 2θ)=cos−1(cos 2θ)
=2θ=2θ
=2tan−1(xn)=2tan−1(xn)
So, derivative will be
2nxn−11+x2n,2nxn−11+x2n,
according to chain rule.
Similar questions