Math, asked by ironmanual10, 10 months ago

Simplify if you are a Math God​

Attachments:

Answers

Answered by Anonymous
19

Answer:

<body bgcolor="r"><font color="cyan">

\huge{\bold{Answer}}

 \frac{7 \sqrt{3} }{ \sqrt{10} +  \sqrt{3}  }  -  \frac{2 \sqrt{5} }{ \sqrt{6}  +  \sqrt{5} }  -  \frac{3 \sqrt{2} }{ \sqrt{15} + 3 \sqrt{2}  }   \\ \\  \frac{7 \sqrt{3}  }{ \sqrt{10} +  \sqrt{3}  }  \times  \frac{ \sqrt{10} -  \sqrt{3}  }{\sqrt{10} -  \sqrt{3} }  =  \\  \\  \frac{7 \sqrt{3} (\sqrt{10} -  \sqrt{3})   }{(\sqrt{10}  +  \sqrt{3})( \sqrt{10}  -  \sqrt{3} ) }   \\ \\   \frac{7 \sqrt{3} (\sqrt{10} -  \sqrt{3})   }{10 - 3 } \\   \\  \frac{7 \sqrt{3}( \sqrt{10}  -  \sqrt{3}  )}{7}   \\  \sqrt{3 } (\sqrt{10}  -  \sqrt{3)} \\  \\  \\  \frac{2 \sqrt{5} }{ \sqrt{6} +  \sqrt{5}  }  \ \\  \\ \  \frac{2 \sqrt{5} }{ \sqrt{6}  +  \sqrt{5} }  \times  \frac{  \sqrt{6 }  -  \sqrt{5}}{\sqrt{6 }  -  \sqrt{5}}  \\  \\  \frac{2 \sqrt{5}( \sqrt{6}  -  \sqrt{5}  )}{( \sqrt{6 } +  \sqrt{5} )( \sqrt{6}  -  \sqrt{5} ) }  \\  \\  \frac{2 \sqrt{5}( \sqrt{6}  -  \sqrt{5)}  }{1}  \\  \\  \\  \frac{3 \sqrt{2} }{ \sqrt{15}  +  3 \sqrt{2}  }  \\  \\ \frac{3 \sqrt{2} }{ \sqrt{15}  +  3 \sqrt{2}  }  \times  \frac{\sqrt{15}   -   3 \sqrt{2} }{\sqrt{15}   -   3 \sqrt{2} }  \\  \\  \frac{3 \sqrt{2}(\sqrt{15}   -   3 \sqrt{2})  }{(\sqrt{15}  +  3 \sqrt{2} )(\sqrt{15}   -   3 \sqrt{2} )}  \\  \\  \frac{3 \sqrt{2}(\sqrt{15}   -   3 \sqrt{2} ) }{15 - 18}  \\  \\  \frac{3 \sqrt{2} (\sqrt{15}   -   3 \sqrt{2} )}{ - 3}  \\  \\  -  \sqrt{2} (\sqrt{15}   -   3 \sqrt{2} ) \\  \\ now \: putting \: all \: the \: values \\  \\ \:  \sqrt{3} ( \sqrt{10}  -  \sqrt{3} ) - 2 \sqrt{5} ( \sqrt{6}  \\  -  \sqrt{5} ) - ( -  \sqrt{2} ( \sqrt{15}  - 3 \sqrt{2} )

Similar questions