Math, asked by niharikasharma52004, 1 year ago

Simplify: log 64 to the base 16 - log 16 to the base 64

Answers

Answered by Cenas
6

Answer:


Step-by-step explanation:


Attachments:
Answered by pinquancaro
18

Answer:

\log_{16}64-\log_{64}16=\frac{5}{6}

Step-by-step explanation:

Given : Expression \log_{16}64-\log_{64}16

To find : Simplify the expression ?

Solution :

We solve the expression into parts,

Let \log_{16}64-\log_{64}16=x-y

So, x=\log_{16}64

Applying logarithmic property, \log_b x=a\Rightarrow b^a=x

16^x=64

(2^4)^x=2^6

2^{4x}=2^6

As base are same power equates,

4x=6

x=\frac{6}{4}

x=\frac{3}{2}

Similar approach for another term,

So, y=\log_{64}16

Applying logarithmic property, \log_b x=a\Rightarrow b^a=x

64^y=16

(4^3)^y=4^2

4^{3y}=4^2

As base are same power equates,

3y=2

y=\frac{2}{3}

Substitute the values back,

\log_{16}64-\log_{64}16=\frac{3}{2}-\frac{2}{3}

\log_{16}64-\log_{64}16=\frac{9-4}{6}

\log_{16}64-\log_{64}16=\frac{5}{6}

Therefore, \log_{16}64-\log_{64}16=\frac{5}{6}

Similar questions