simplify log36 interms of log 2 and log 3
Answers
Answered by
0
log 36
= log (2×2×3×3)
= log (2²×3²)
[Now, log ab = log a + log b]
= log (2²) + (log 3²)
[Now, log aⁿ = n log a ]
= 2 log 2 + 2 log 3
= 2( log 2 + log 3)
= log (2×2×3×3)
= log (2²×3²)
[Now, log ab = log a + log b]
= log (2²) + (log 3²)
[Now, log aⁿ = n log a ]
= 2 log 2 + 2 log 3
= 2( log 2 + log 3)
Answered by
2
Hey there!
=========
36
=2*18
=2*2*9
=2*2*3*3
log 36 =log(2²*3²)
logab=loga+logb
log36=log2²+log3²
logm^n=nlogm
finally,
log36= 2 log 2 + 2 log 3
= 2( log 2+log3)
=====================
hope helped!
=========
36
=2*18
=2*2*9
=2*2*3*3
log 36 =log(2²*3²)
logab=loga+logb
log36=log2²+log3²
logm^n=nlogm
finally,
log36= 2 log 2 + 2 log 3
= 2( log 2+log3)
=====================
hope helped!
Similar questions