Math, asked by Anonymous, 1 year ago

Simplify...


Need explaination :)



Attachments:

Answers

Answered by MrThakur14Dec2002
8

SOLUTION......

 \tan \: inverse \: ( \frac{a \cos(x)  - b \sin(x) }{b \cos(x)  + a \sin(x)  } )

Now ,

Dividing numerator and denominator by b cos x .

 \tan \: inverse \: ( \frac{ \frac{a \cos(x)  - b \sin(x) }{b \cos(x) } }{ \frac{b \cos(x) + a \sin(x)  }{b \cos(x) } } )

 \tan \: inverse \: ( \frac{ \frac{a}{b}  -  \tan(x) }{1  +  \frac{a}{b} \tan(x)  } )

We Know that :-

tan \: a \:  - tan \: b =  \frac{tan \: a \:  - tan \: b}{1 + tan \: a \:  \times tan \: b}

So,

  \tan  \: inverse \: ( \frac{a}{b})  -  \tan \: inverse( \tan(x) )  \:

 \tan \: inverse \: ( \frac{a}{b} )  - x


MrThakur14Dec2002: but why ??
MrThakur14Dec2002: good morning
MrThakur14Dec2002: have a nice day to you
MrThakur14Dec2002: baad mai krunga post question........✌✌
MrThakur14Dec2002: thoda wait.....
Answered by Anonymous
0

Answer:

\huge\pink{hey\:mate\:refer\:to\:attatchment}

Attachments:
Similar questions