Math, asked by HyPerSniPer, 2 months ago

Simplify
No Wrong answer plz​

Attachments:

Answers

Answered by TYKE
0

 \frac{(81)^{n}3 ^{5}   - (3) ^{4n - 1}(243) }{ {(9)}^{2n}  {(3)}^{3} }

 \frac{(3)^{ 4n}3 ^{5}  -  {(3)}^{4n - 1} (3)^{5} }{ {(3)}^{2(2n)}(3) ^{3}   }

 \frac{3^{4n + 5} -  {3}^{4n - 1 + 5}  }{ {3}^{4n + 3}  }

 {3}^{4n + 5}  -  {3}^{4n - 4}  =  {3}^{4n + 3}

 {3}^{4n + 5}  =  {3}^{4n  + 3}  + 3^{4n - 4}

4n + 5  = 4n  + 3 + 4n - 4

4n - 8n  = 3 - 4 - 5

 - 4n =  - 6

n =  \frac{6}{4}  = 1  \frac{1}{2}

Answered by Anonymous
5

Refer the attachment for complete answer ✔️

Attachments:
Similar questions