Math, asked by deepanshi22, 1 year ago

simplify root { 3+root 2}

Answers

Answered by sairishitamann
0

Let's simplify \sqrt{75}

75

​ square root of, 75, end square root by removing all perfect squares from inside the square root.

We start by factoring 757575, looking for a perfect square:

75=5\times5\times3=\blueD{5^2}\times375=5×5×3=5

2

×375, equals, 5, times, 5, times, 3, equals, start color blueD, 5, start superscript, 2, end superscript, end color blueD, times, 3.

We found one! This allows us to simplify the radical:

\begin{aligned} \sqrt{75}&=\sqrt{\blueD{5^2}\cdot3} \\\\ &=\sqrt{\blueD{5^2}} \cdot \sqrt{{3}} \\\\ &=5\cdot \sqrt{3} \end{aligned}

75

=

5

2

⋅3

=

5

2

​ ⋅

3

=5⋅

3

So \sqrt{75}=5\sqrt{3}

75

​ =5

3

​ square root of, 75, end square root, equals, 5, square root of, 3, end square root.

Similar questions