Math, asked by shuklatj, 9 months ago

simplify root over((1+sin theta)/(1-sin theta)+(1-sin theta)/1+sin theta))=2sec theta

Answers

Answered by sourya1794
2

\huge\boxed{\fcolorbox{#7fff00}{white}{Hello Dear}}\huge\bold\pink{{{{{{Answer}}}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━

solution~

\sqrt{\frac{1+sin\theta}{1-sin\theta}}+\sqrt{\frac{1-sin\theta}{1+sin\theta}}=2sec\theta

\sqrt{\frac{1+sin\theta}{1-sin\theta}}+\sqrt{\frac{1-sin\theta}{1+sin\theta}}

\frac{\left(\sqrt{1+sin\theta}\right)^{2}+\left(\sqrt{1-sin\theta}\right)^{2}}{\sqrt{(1-sin\theta)(1+sin\theta)}}

\frac{1-sin\theta+1+sin\theta}{\sqrt{1^{2}-sin^{2}\theta}}

\frac{2}{\sqrt{cos^{2}\theta}}

\frac{2}{cos\theta}

2sec\theta

Therefore,

\sqrt{\frac{1+sin\theta}{1-sin\theta}}+\sqrt{\frac{1-sin\theta}{1+sin\theta}}=2sec\theta

━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions