Math, asked by Roja45, 1 year ago

simplify: (root5 -root3) /(root 5+root3)

Attachments:

Answers

Answered by sk0768173gmailcom
12

 \frac{ (\sqrt{5} -  \sqrt{3})( \sqrt{5}  -  \sqrt{3}   )}{( \sqrt{5}  +  \sqrt{3})( \sqrt{5} -  \sqrt{3}  ) }   \\  =  \frac{5 + 3 - 2 \sqrt{15} }{5 - 3}  \\  =  \frac{8 - 2 \sqrt{5} }{2} \\  =  \frac{2(4 -  \sqrt{5}) }{2}   \\  = 4 -  \sqrt{5}  \:  \:  \:  \: ans

Roja45: How Can U Get this Image...
sk0768173gmailcom: what
sk0768173gmailcom: About which image are you talking
Roja45: answer pic
sk0768173gmailcom: it is typing not the pic
sk0768173gmailcom: use of scientific calculator
Answered by vinod04jangid
0

Answer:

4 - √15

Step-by-step explanation:

Given:- The given expression is (√5 - √3) / (√5 + √3)

To find:- Value of the given expression.

Solution:-

As we know that √5 and √3 both are irrational number and the difference of irrational numbers is always an irrational number.

We will rationalize the above expression by making the denominator a rational number.

So we will multiply the numerator and denominator by (√5 - √3)

\frac{\sqrt{5} -\sqrt{3} }{\sqrt{5} +\sqrt{3} } * \frac{\sqrt{5} -\sqrt{3} }{\sqrt{5} - \sqrt{3} }

= \frac{(\sqrt{5} -\sqrt{3} )^{2} }{(\sqrt{5} +\sqrt{3} )(\sqrt{5} -\sqrt{3} )}

= \frac{(\sqrt{5} -\sqrt{3} )^{2} }{(\sqrt{5})^{2}-(\sqrt{3})^{2} }        [∵ a² - b² = (a + b)(a - b)]

= \frac{(\sqrt{5} -\sqrt{3} )^{2} }{(5-3) }

= \frac{(\sqrt{5})^{2}+(\sqrt{3} )^{2} - 2\sqrt{5} \sqrt{3}  }{2 }       [∵ (a - b)² = a² + b² - 2ab]

= \frac{5+3-2\sqrt{15}  }{2 }

= \frac{8-2\sqrt{15}  }{2 }

= \frac{2(4-\sqrt{15})  }{2 }

= (4-\sqrt{15})

Therefore, the value of (√5 - √3) / (√5 + √3) is (4 - √15).

#SPJ3

To understand the concept better, also solve

https://brainly.in/question/5911983

https://brainly.in/question/10331210

Similar questions